多模态内容理解算法框架项目 Lichee 正式开源,为微服务开源社区贡献力量

8a6a873276422a0215119ce9e620d11a.gif

导语|Lichee 是一个多模态内容理解算法框架项目,其中包含数据增强、预训练引擎、常见模型以及推理加速等模块。由腾讯看点内容算法研发中心研发。并于 2021 年在腾讯看点、腾讯视频、内容管线、QQ等业务场景均有落地,并平均减少标注样本量 40%+。经过多次实践迭代,可以大幅缩短信息流内容理解需求的研发周期提升人效。此外,为QQ浏览器2021AI算法大赛-多模态视频相似度赛道提供baseline模型及代码。现将Lichee对外开源,为微服务开源社区贡献力量。

PART ONE

主要设计目标

1. 缩短信息流内容理解需求的研发周期

2. 集成AI领域的成熟解决方案

PART TWO

Lichee功能介绍以及适用场景

Lichee 主框架采用分层的思想组织模型训练,通过配置文件组合 DATA、Parser、MODEL、Optimizer、Scheduler 等组件,构建具体的训练流程。此外,Lichee还提供了数据清理、推理加速等能力。

4e43c6dd64dfe26fed4fcd311c8e57a4.png

PART THREE

Lichee技术特点

1. 性能优越的预训练引擎

提供了自研中文预训练模型,如 LICHEE-NLG-ENGINE、LICHEE-RESNET-ENGINE 等,免除训练中文预训练模型必须的大量资源和高质量语料库的限制。LICHEE / ShenZhou 预训练模型先后于 2021 年 1 月 8 号和 2021 年 9 月 19 号登顶中文 NLP 权威榜单 CLUE。相关技术创新在 NLP 顶会 ACL 2021 发表文章(https://arxiv.org/pdf/2108.00801.pdf)。

2. 基于配置化的模型训练

满足90%+业务场景仅通过配置即可完成模型训练任务。

3. 提供二次开发能力

提供了基于插件的二次开发能力,来满足更复杂的特殊业务场景。

4. 数据增强

为了进一步降低任务样本的数量,提供了数据增强插件,解决脏数据清洗和数据生成等方面的工作。

5. 能力插件

提供了更多的结构化能力插件,如词法分析工具 LICHEE-LAC、句子相似度工具 LICHEE-SIM、人脸识别工具等。

6. 推理加速

集成推理加速的能力,能够降低业务模型的实际部署成本。

PART FOUR

Lichee项目规划

1. 扩充各领域的预训练模型

2. 扩充训练加速、推理加速能力

3. 兼容 hugging face 项目

4. 提升项目的易用性、开放性及效率

PART FIVE

Lichee开源地址

https://github.com/Tencent/Lichee

欢迎提出你的 issue 和 PR!

本文转载自:腾讯开源 公众号

作者:腾讯开源 

be04fb7e02629bcbdbd99ce934a8cd31.png

欢迎关注「腾源会」公众号,期待你的「在看」哦~👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值