求区间内能被n整除%n==0,%n==1,%n==2....的个数

以n为3举例,如果求区间[l , r]中mod3==0的个数,那就是r/3-(l-1)/3,(就是0~r中3的倍数减去0~(l-1) 3的倍数)

那%3==1的个数怎么求呢,我们不妨可以将[l , r]区间中的所有数都加上2,那我们所求的%3==1的个数,就是在[l+2 , r+2]区间求%3==0的个数, 那就是(r+2)/3-(l+1)/3

同理%3==2的个数,就是[l+1,r+1]中%3==0的个数,(r+1)/3-l/3。所以求%n==m在区间里的只需转化成求%n==0即可。

#include<bits/stdc++.h>
using namespace std;
int main(){
	int l,r;
	while(cin>>l>>r){
		cout<<"%3==0 :"<<r/3-(l-1)/3<<endl;
		cout<<"%3==1 :"<<(r+2)/3-(l+1)/3<<endl;
		cout<<"%3==2 :"<<(r+1)/3-(l)/3<<endl;
	}
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值