这题怎么能叫模板呢,分明是个变种题
解题思路:dp呀,这不是肯定dp嘛,dp[i][j]指的是a串到第i个字符,b串到第j个字符的最长公共子序列,看一眼数据,还要把二维优化成一维。代码如下
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
const ll inf=0x3f3f3f3f;
const int maxn=1e5+5;
int dp[maxn];
int a[maxn],b[maxn],n;
int main(){
std::ios::sync_with_stdio(0);
cin>>n;
for(int i=1;i<=n;++i){
cin>>a[i];
}
for(int i=1;i<=n;++i){
cin>>b[i];
}
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
if(a[i]==b[j]) dp[j]=max(dp[j],dp[j-1]+1);
else dp[j]=max(dp[j],max(dp[j],dp[j-1]));
}
}
cout<<dp[n]<<endl;
return 0;
}
50分!T的飞起(n也太大了呀),那这题还能怎么解啊,一时之间毫无头绪。可能这题是在告诉我们不能固定思维吧;
正解:求最长上升子序列,这又是如何联系上的呢,由于题意说是1-n的排列(也是一开始没有注意到的),所以可以一一映射,我们只要把第一个序列映射成1,2,3...n,那在第二个序列的映射里求一个最长上升子序列就行了。就拿题目给的例子举个栗子:
3 2 1 4 5 我们将这个序列映射成1~n;那就是 3->1, 2->2, 1->3, 4->4, 5->5
该序列就变成了 (1) (2) (3) (4) (5)
1 2 3 4 5 这个序列根据映射规则同样,变成了(3) (2) (1) (4) (5)
由于映射规则相同,只需要在第二个序列中求最长上升序列 (1) (4) (5) 对应得原数就是 3,4,5这一步转化还是非常巧妙的。
这样变成了求最长上升子序列,复杂度为O(nlogn);
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int n,be[maxn],la[maxn],tp,len=0;
int main(){
std::ios::sync_with_stdio(0);
cin>>n;
for(int i=1;i<=n;++i){
cin>>tp;
be[tp]=i;
}
for(int i=1;i<=n;++i){
cin>>tp;
if(be[tp]>la[len]){
la[++len]=be[tp];
}
else{
int k=lower_bound(la+1,la+len+1,be[tp])-la;
la[k]=be[tp];
}
}
cout<<len<<endl;
return 0;
}