传送门
题意:给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R)。求A[L] 至 A[R] 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值是多少?
思路:所有可持久化的树型结构都是一样的,每次只更新一支,沿用上一个树的一支。具体原理可以先看主席树的。
/*可持久化字典树*/
#include<bits/stdc++.h>
#define il inline
#define pb push_back
#define fi first
#define se second
#define ms(_data,v) memset(_data,v,sizeof(_data))
#define sc(n) scanf("%d",&n)
#define SC(n,m) scanf("%d %d",&n,&m)
#define SZ(a) int((a).size())
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define drep(i,a,b) for(int i=a;i>=b;--i)
using namespace std;
typedef long long ll;
const ll inf=0x3f3f3f3f;
const double PI=acos(-1.0);
const double eps=1e-9;
const int maxn=5e4+5;
int n,q,cnt=0,a;
int son[maxn*35][2],root[maxn*35],sum[maxn*35];
il int Insert(int val,int pre){
int x=++cnt,t=x;
for(int i=31;i>=0;--i){
son[x][0]=son[pre][0],son[x][1]=son[pre][1];
sum[x]=sum[pre]+1; //记录这个节点出现的次数,存储的是前缀和
int id=1&(val>>i);
son[x][id]=++cnt; //就更新一支
x=son[x][id],pre=son[pre][id];
}
sum[x]=sum[pre]+1;
return t;
}
il int Query(int val,int l,int r){
int ans=0;
for(int i=31;i>=0;--i){
int id=!(1&(val>>i)); //val这一位的反
if(sum[son[r][id]]-sum[son[l][id]]>0){ 如果>0,那就或上
ans|=(1<<i);
l=son[l][id],r=son[r][id]; //进入这个枝节
}
else l=son[l][!id],r=son[r][!id]; //不行就只能进入另一个枝节
}
return ans;
}
int main(){
std::ios::sync_with_stdio(0);
cin>>n>>q;
rep(i,1,n) cin>>a,root[i]=Insert(a,root[i-1]);
int x,l,r;
rep(i,1,q) {
cin>>x>>l>>r;
l++,r++;
cout<<Query(x,root[l-1],root[r])<<endl;
}
return 0;
}