(Nowcoder) B.generator 1 (思维)

传送门

题意:题意很简单就是求广义斐波那契数列的第n项,但是n非常大。

思路:一直再想找循环节,因为和网上一道题很像emmm,(出题人说这个好像是找不到循环节的),太过于固定思维了,矩阵快速幂被二进制那种所限制,而忘记了十进制。想法像将字符串转变为数字那样进行计算,看似非常大的n,其实最后复杂度就是1e7级别。

#include<bits/stdc++.h>
#define il inline
#define pb push_back
#define ms(_data,v) memset(_data,v,sizeof(_data))
#define sc(n) scanf("%d",&n)
#define SC(n,m) scanf("%d %d",&n,&m)
#define SZ(a) int((a).size())
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define drep(i,a,b)	for(int i=a;i>=b;--i)
using namespace std;
typedef long long ll;
const ll inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const double eps=1e-9;
int mod,x0,x1;
struct Ma{
	int a[3][3];
	Ma(){ms(a,0);}
	Ma operator* (const Ma &tp) const{
		Ma res;
		for(int i=1;i<=2;++i){
			for(int j=1;j<=2;++j){
				for(int k=1;k<=2;++k){
					res.a[i][j]=(res.a[i][j]+1LL*a[i][k]*tp.a[k][j])%mod;
				}
			} 
		}
		return res;
	}
};
char s[1000005];
int main() {
	Ma x,ans,tp;
	scanf("%d%d%d%d",&x0,&x1,&x.a[1][1],&x.a[1][2]);
    scanf("%s",s+1);
	scanf("%d",&mod);
	x.a[2][1]=1,ans.a[1][1]=1,ans.a[2][2]=1; 
	int len=strlen(s+1);
	for(int i=len;i>=1;--i){
		int num=s[i]-'0';
		for(int j=1;j<=num;++j)	ans=ans*x;
		tp.a[1][1]=1,tp.a[1][2]=0;
		tp.a[2][1]=0,tp.a[2][2]=1;
		for(int j=1;j<=10;++j) tp=tp*x;
		x=tp;
	}
	ll res=(1LL*ans.a[2][1]*x1%mod+1LL*ans.a[2][2]*x0%mod)%mod;
	printf("%lld\n",res);
	return 0;
}

还有以前两个很大的乘数取模,却没有想到将乘法转化为加法用类似与快速幂的方法去做。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值