U-net介绍

原创 2018年04月15日 15:22:23

U-net的产生极大的促进了医学图像分割的研究。2015年Olaf Ronneberger, Philipp Fischer和Thomas Brox提出了U-net网络结构,并用于ISBI比赛中电子显微镜下细胞图像的分割,以较大的优势取得了冠军。U-net是基于全卷积网络拓展和修改而来,网络由两部分组成:一个收缩路径(contracting path)来获取上下文信息以及一个对称的扩张路径(expanding path)用以精确定位

U-net的主要优点为:

  • 支持少量的数据训练模型
  • 通过对每个像素点进行分类,获得更高的分割准确率
  • 用训练好的模型分割图像,速度快


接下来将详细介绍u-net:


Fig.1为Olaf Ronneberger等人构建的u-net网络结构,整个模型因呈现“U”型,固因此得名。

图中“”表示卷积层(conv 3×3, ReLu),""表示裁剪和复制,“”表示池化层(max pool 2×2),""表示上采样(up-conv 2×2),“”表示卷积层(conv 1×1)。整个网络有19次卷积操作,4次池化操作,4次上采样操作,4次裁剪和复制操作。卷积层使用的是“valid ,padding=0, stride=1”的模式进行卷积,所以最终得到的输出图像要小于原始图像。若想得到与原图像同样尺寸的输出图像,可以在卷积操作,时使用“same”模式。

损失函数使用基于像素的交叉熵函数和softmax.

其中softmax定义为:

          

指在第个通道中位置为的值,为分类的类别数。

最终得到的算是函数定义为:


每个像素值的权重值,对重要的像素点给与更大的关注。


Olaf Ronneberger等需要分割如图fig.3的细胞图像,需要对两个细胞间的相邻边界给与更多的关注。


固设计出权重映射为:


其中为输入的分割图像掩码,如图fig.3.c,  d1(x)为像素x到离它最近的细胞的距离,d2(x)为像素x到离它第二近的细胞的距离。在他们的实验中,设置以及




U-net翻译

原文名:U-Net: Convolutional Networks for Biomedical Image Segmentation (此网络用于分割细胞图像) 简介 成功训练一个...
  • natsuka
  • natsuka
  • 2017-11-17 20:55:02
  • 2657

U-Net论文详解

U-Net:生物医学图像分割的卷积神经网络 U-net 是基于FCN的一个语义分割网络,适合用来做医学图像的分割。 摘要 有许多成功利用大量带标注训练数据的神经网络。在这篇论文里,我们提出一个网...
  • jianyuchen23
  • jianyuchen23
  • 2018-02-22 22:54:15
  • 280

深度学习(四)

一、提纲     AlexNet:现代神经网络起源     VGG:AlexNet增强版     GoogleNet:多维度识别     ResNet:机器超越人类识别     Deep...
  • a294271433
  • a294271433
  • 2017-03-20 22:01:38
  • 1401

【深度学习论文】:U-Net

U-Net在深度学习应用到计算机视觉领域之前,人们使用 TextonForest 和 随机森林分类器进行语义分割。卷积神经网络(CNN)不仅对图像识别有所帮助,也对语义分割领域的发展起到巨大的促进作用...
  • hduxiejun
  • hduxiejun
  • 2017-05-03 10:04:39
  • 16007

U-net使用, 图像分割(边缘检测)

U-Net: Convolutional Networks for Biomedical Image Segmentation     通过阅读这篇论文了解到在医学图像领域还是有这样一个网络存在, 它...
  • qq_18293213
  • qq_18293213
  • 2017-05-17 20:29:15
  • 21269

u-net 实现(keras)

  • 2017年04月17日 21:11
  • 14.29MB
  • 下载

U-net 图像分割

U-Net: Convolutional Networks for Biomedical Image Segmentation     通过阅读这篇论文了解到在医学图像领域还是有这样一个网络存在...
  • gqixf
  • gqixf
  • 2017-09-13 11:23:01
  • 985

[论文阅读笔记]U-Net: Convolutional Networks for Biomedical Image Segmentation

摘要   大意是说 ,普遍认为深度网络需要大量已标签数据集,这个网络(U-Net)可以依靠数据增强来事先少量数据集训练网络。而且,这个网络训练得很快,运用GPU运行,512*512的图片只需要不用...
  • qq_19784349
  • qq_19784349
  • 2017-11-22 20:54:40
  • 451

深度学习U-net个人理解

一种编码器-解码器结构。编码器逐渐减少池化层的空间维度,解码器逐步修复物体的细节和空间维度。编码器和解码器之间通常存在快捷连接,因此能帮助解码器更好地修复目标的细节。U-Net 是这种方法中最常用的结...
  • gbyy42299
  • gbyy42299
  • 2018-01-02 18:03:53
  • 220

U-Net及使用keras搭建U-Net分割网络

U-Net: Convolutional Networks for Biomedical Image Segmentation https://arxiv.org/abs/1505.04597 ...
  • m0_37477175
  • m0_37477175
  • 2018-01-22 10:46:48
  • 596
收藏助手
不良信息举报
您举报文章:U-net介绍
举报原因:
原因补充:

(最多只允许输入30个字)