U-net的产生极大的促进了医学图像分割的研究。2015年Olaf Ronneberger, Philipp Fischer和Thomas Brox提出了U-net网络结构,并用于ISBI比赛中电子显微镜下细胞图像的分割,以较大的优势取得了冠军。U-net是基于全卷积网络拓展和修改而来,网络由两部分组成:一个收缩路径(contracting path)来获取上下文信息以及一个对称的扩张路径(expanding path)用以精确定位。
U-net的主要优点为:
- 支持少量的数据训练模型
- 通过对每个像素点进行分类,获得更高的分割准确率
- 用训练好的模型分割图像,速度快
接下来将详细介绍u-net:
Fig.1为Olaf Ronneberger等人构建的u-net网络结构,整个模型因呈现“U”型,固因此得名。
图中“”表示卷积层(conv 3×3, ReLu),"
"表示裁剪和复制,“