问题描述
有n种物品,每种物品的单件重量为w[i],价值为c[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都有无穷件。
先放出综合代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e3;
int dp[N][N];//二维
int n, m;
int w[N],v[N];
int cp[N];//一维
int main()
{
cin >> m >> n;
for(int i = 1; i <= n; i++)
{
cin >> w[i] >> v[i];
}
for(int i = 1; i <= n; i++)
{
// for(int j = 1; j <= m; j++)//二维
// {
// for(int k = 0; k * w[i] <= j; k++)
// {
// dp[i][j] = max(dp[i][j], dp[i - 1][j - k * w[i]] + k * v[i]);
// }
// }
for(int j = w[i]; j <= m; j++)//一维
{
cp[j] = max(cp[j], cp[j - w[i]] + v[i]);
}
}
// cout << "max=" << dp[n][m];//二维
cout << "max=" << cp[m]; //一维
}
对于01背包问题,每种物品只有两种选择:选和不选,我们推导的转移方程如下:
dp[k] = max(value[i]+dp[k-weight[i]], dp[k])
完全背包问题中,每个物品有无限件,也就是从每种物品的角度考虑,与它相关的策略并非选或者不选两种。而是:选0件、选1件、选2件…等等多种策略。
我们借鉴01背包问题的思路,将每种选择策略的结果都计算出来,然后取所有策略状态的最大值,转移方程如下:
令dp[i][j]表示前i种物品放入容量为j的背包的最大价值:
dp[i][j] = max{dp[i-1][j-k*weight[i]]+k*value[i]|0<=k*value[i]<=j}
核心代码:
//完全背包:递推求解dp状态
for (int i = 1; i <=n ; ++i) {//物品
for (int j = 1; j <=c ; ++j) {//背包空间
//这里需要计算所有策略,对应01背包问题,这里只需要计算选和不选两种策略
for (int k = 0; k*weight[i] <= j ; ++k) {
dp[i][j] = max(dp[i][j],dp[i-1][j-k*weight[i]]+k*value[i]);
}
}
}
注意!
- i,j都是从1开始推导,
dp[0][]
和dp[][0]
默认为0,没有做初始化,某些题目需要注意,初始状态需要特别处理 - 上面的代码
dp[i][j]
在k=0的条件下:
dp[i][j] = dp[i-1][j]
即不选第i件物品的最大背包价值,与01问题一致
二维代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e3;
int dp[N][N];
int n, m;
int w[N],v[N];
int main()
{
cin >> m >> n;
for(int i = 1; i <= n; i++)
{
cin >> w[i] >> v[i];
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
for(int k = 0; k * w[i] <= j; k++)
{
dp[i][j] = max(dp[i][j], dp[i - 1][j - k * w[i]] + k * v[i]);
}
}
}
cout << "max=" << dp[n][m];
return 0;
}
状态压缩
与01背包问题一样,我们分析转移方程,可以得出dp[i][k]只与dp[i-1][..]有关,01背包问题中,我们可以使用一维数组来优化空间,完全背包同样适用!
代码如下:
for(int i = 1 ; i <= n ; i++){
for(int k = weight[i]; k <= c ; k++){// 正向枚举v
dp[k] = max(dp[k],dp[k-w[i]] + value[i]);
}
}
与01背包相比,只是k的循环次序不同
怎么理解正向枚举呢?
完全背包的转移方程可以转化为
dp[i][j]=max{dp[i−1][j],dp[i][j−w[i]]+v[i]}
进一步分析:
如图所示,求解dp[i][v]
需要它左边的dp[i][v-w[i]]
和它上方的dp[i-1][v]
再进一步,我们可以吧二维的数组压缩成一维数组
如果所示,我们选取第i-1件物品,把dp的状态都保存在一维数组里,那么选取第i件物品时,可以直接复用现在数组的dp状态并进行修改
求解dp[v]
的状态,需要它左边的dp[v-w[i]]
和它方的dp[i-1][v]
,在一维数组里,这个值就是dp[v]
,
显然如果让v从小到大枚举,dp[v-w[i]]
就总是已经计算出的结果;而计算出dp[v]
可以直接覆盖,因为是正向遍历,不会再用到上一次的dp[v]
。
一维代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e3;
int n, m;
int w[N],v[N];
int cp[N];
int main()
{
cin >> m >> n;
for(int i = 1; i <= n; i++)
{
cin >> w[i] >> v[i];
}
for(int i = 1; i <= n; i++)
{
for(int j = w[i]; j <= m; j++)
{
cp[j] = max(cp[j], cp[j - w[i]] + v[i]);
}
}
cout << "max=" << cp[m];
}