完全背包问题

问题描述

有n种物品,每种物品的单件重量为w[i],价值为c[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都有无穷件。

先放出综合代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e3;
int dp[N][N];//二维 
int n, m;
int w[N],v[N];
int cp[N];//一维 
int main()
{
	cin >> m >> n;
	for(int i = 1; i <= n; i++)
	{
		cin >> w[i] >> v[i];
	}
	for(int i = 1; i <= n; i++)
	{
//		for(int j = 1; j <= m; j++)//二维 
//		{
//			for(int k = 0; k * w[i] <= j; k++)
//			{
//				dp[i][j] = max(dp[i][j], dp[i - 1][j - k * w[i]] + k * v[i]);
//			}
//		}
		for(int j = w[i]; j <= m; j++)//一维 
		{
			cp[j] = max(cp[j], cp[j - w[i]] + v[i]);
		}
	}
//	cout << "max=" << dp[n][m];//二维 
 	cout << "max=" << cp[m]; //一维
}

对于01背包问题,每种物品只有两种选择:选和不选,我们推导的转移方程如下:

dp[k] = max(value[i]+dp[k-weight[i]], dp[k])

完全背包问题中,每个物品有无限件,也就是从每种物品的角度考虑,与它相关的策略并非选或者不选两种。而是:选0件、选1件、选2件…等等多种策略

我们借鉴01背包问题的思路,将每种选择策略的结果都计算出来,然后取所有策略状态的最大值,转移方程如下:

令dp[i][j]表示前i种物品放入容量为j的背包的最大价值:

dp[i][j] = max{dp[i-1][j-k*weight[i]]+k*value[i]|0<=k*value[i]<=j}

核心代码:

//完全背包:递推求解dp状态
    for (int i = 1; i <=n ; ++i) {//物品
        for (int j = 1; j <=c ; ++j) {//背包空间
            //这里需要计算所有策略,对应01背包问题,这里只需要计算选和不选两种策略
            for (int k = 0; k*weight[i] <= j ; ++k) {
                dp[i][j] = max(dp[i][j],dp[i-1][j-k*weight[i]]+k*value[i]);
            }
        }
    }

注意!

  1. i,j都是从1开始推导,dp[0][]dp[][0]默认为0,没有做初始化,某些题目需要注意,初始状态需要特别处理
  2. 上面的代码dp[i][j]在k=0的条件下:
dp[i][j] = dp[i-1][j]

即不选第i件物品的最大背包价值,与01问题一致

二维代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e3;
int dp[N][N];
int n, m;
int w[N],v[N];
int main()
{
	cin >> m >> n;
	for(int i = 1; i <= n; i++)
	{
		cin >> w[i] >> v[i];
	}
	for(int i = 1; i <= n; i++)
	{		
        for(int j = 1; j <= m; j++) 
		{
			for(int k = 0; k * w[i] <= j; k++)
			{
				dp[i][j] = max(dp[i][j], dp[i - 1][j - k * w[i]] + k * v[i]);
			}
		}
    }
    cout << "max=" << dp[n][m];
    return 0;
}

状态压缩

与01背包问题一样,我们分析转移方程,可以得出dp[i][k]只与dp[i-1][..]有关,01背包问题中,我们可以使用一维数组来优化空间,完全背包同样适用!

代码如下:

for(int i = 1 ; i <= n ; i++){
    for(int k = weight[i]; k <= c ; k++){// 正向枚举v
        dp[k] = max(dp[k],dp[k-w[i]] + value[i]);
    }
}

与01背包相比,只是k的循环次序不同

怎么理解正向枚举呢?

完全背包的转移方程可以转化为

dp[i][j]=max⁡{dp[i−1][j],dp[i][j−w[i]]+v[i]}

证明过程

进一步分析:

如图所示,求解dp[i][v] 需要它左边的dp[i][v-w[i]] 和它上方的dp[i-1][v] 

再进一步,我们可以吧二维的数组压缩成一维数组

如果所示,我们选取第i-1件物品,把dp的状态都保存在一维数组里,那么选取第i件物品时,可以直接复用现在数组的dp状态并进行修改

求解dp[v] 的状态,需要它左边的dp[v-w[i]]和它方的dp[i-1][v] ,在一维数组里,这个值就是dp[v]

显然如果让v从小到大枚举,dp[v-w[i]] 就总是已经计算出的结果;而计算出dp[v] 可以直接覆盖,因为是正向遍历,不会再用到上一次的dp[v]

一维代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e3;
int n, m;
int w[N],v[N];
int cp[N];
int main()
{
	cin >> m >> n;
	for(int i = 1; i <= n; i++)
	{
		cin >> w[i] >> v[i];
	}
	for(int i = 1; i <= n; i++)
	{
		for(int j = w[i]; j <= m; j++)
		{
			cp[j] = max(cp[j], cp[j - w[i]] + v[i]);
		}
	}
 	cout << "max=" << cp[m];
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值