强连通分量模板

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <vector>
#include <stack>
using namespace std;
const int maxn = 2000 + 7;
const int INF = ~0U >> 1;
vector<int> G[maxn];
int n, m, k = 0, cnt = 0;
int low[maxn], dfn[maxn], in[maxn];
stack<int> s;

void tarjan(int u) {
    low[u] = dfn[u] = ++k;
    s.push(u);
    in[u] = 1;
    for(int i = 0; i < G[u].size(); ++i) {
        int v = G[u][i];
        if(!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
        } else if(in[v]) {
            low[u] = min(low[u], dfn[v]);
        }
    }
    int v;
    if(dfn[u] == low[u]) {
        ++cnt;
        do {
            v = s.top(); s.pop();
            in[v] = 0;
        } while(u != v);
    }
}

int main() {
    scanf("%d%d", &n, &m);
    int u, v;
    for(int i = 0; i < m; ++i) {
        scanf("%d%d", &u, &v);
        G[u].push_back(v);
    }
    for(int i = 1; i <= n; ++i) {
        if(!dfn[i]) tarjan(i);
    }
    printf("%d\n", cnt);
    return 0;
}


参考地址:点击打开链接

Tarjan算法的操作原理如下:

  1. Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。
  2. 可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
  3. 这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
  4. 强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
  5. 如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值