HDU 5861 Road(线段树)

很暴力的写法。直接怼了三颗线段树,怕出错
思路就是先区间更新出每条路最早使用时间跟最短使用时间,然后再把这个区间维护到另一颗线段树上用于求每一天的总花费,注意当这条路自始至终都没有用到的话要特判,不然会RE

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>

using namespace std;

#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1

typedef long long LL;
const int maxn = 200000 + 7;

int lazy1[maxn * 6], lazy2[maxn * 6];
int maxx[maxn], minn[maxn];

void PushDown1(int rt) {
    if (lazy1[rt]) {
        if (lazy1[rt << 1 | 1] == 0) lazy1[rt << 1 | 1] = lazy1[rt];
        if (lazy1[rt << 1] == 0) lazy1[rt << 1] = lazy1[rt];
        lazy1[rt] = 0;
    }
}

void PushDown2(int rt) {
    if (lazy2[rt]) {
        if (lazy2[rt << 1 | 1] == 0) lazy2[rt << 1 | 1] = lazy2[rt];
        if (lazy2[rt << 1] == 0) lazy2[rt << 1] = lazy2[rt];
        lazy2[rt] = 0;
    }
}

void build(int l, int r, int rt) {
    lazy1[rt] = lazy2[rt] = 0;
    if (l == r) return ;
    int m = (l + r) >> 1;
    build(lson);
    build(rson);
}

void update1(int L,int R,int c,int l,int r,int rt) {
    if (L <= l && r <= R) {
        if (lazy1[rt]) return ;
        lazy1[rt] = c;
        return ;
    }
    PushDown1(rt);
    int m = (l + r) >> 1;
    if (L <= m) update1(L, R, c, lson);
    if (R > m) update1(L, R, c, rson);
}

void update2(int L,int R,int c,int l,int r,int rt) {
    if (L <= l && r <= R) {
        if (lazy2[rt]) return ;
        lazy2[rt] = c;
        return ;
    }
    PushDown2(rt);
    int m = (l + r) >> 1;
    if (L <= m) update2(L, R, c, lson);
    if (R > m) update2(L, R, c, rson);
}

void query1(int L,int R, int l, int r, int rt) {
    if (l == r) {
        minn[l] = lazy1[rt];
        return ;
    }
    PushDown1(rt);
    int m = (l + r) >> 1;
    if (L <= m) query1(L, R, lson);
    if (m < R) query1(L, R, rson);
}

void query2(int L,int R, int l, int r, int rt) {
    if (l == r) {
        maxx[l] = lazy2[rt];
        return ;
    }
    PushDown2(rt);
    int m = (l + r) >> 1;
    if (L <= m) query2(L, R, lson);
    if (m < R) query2(L, R, rson);
}

int w[maxn];

struct node {
    int l, r;
} q[maxn];

LL add[maxn<<2];
LL sum[maxn<<2];

void PushUp(int rt) {
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}

void PushDown(int rt,int m) {
    if (add[rt]) {
        add[rt<<1] += add[rt];
        add[rt<<1|1] += add[rt];
        sum[rt<<1] += add[rt] * (m - (m >> 1));
        sum[rt<<1|1] += add[rt] * (m >> 1);
        add[rt] = 0;
    }
}
void buildsum(int l,int r,int rt) {
    add[rt] = 0;
    if (l == r) {
        sum[l] = 0;
        return ;
    }
    int m = (l + r) >> 1;
    build(lson);
    build(rson);
    PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt) {
    if (L <= l && r <= R) {
        add[rt] += c;
        sum[rt] += (LL)c * (r - l + 1);
        return ;
    }
    PushDown(rt, r - l + 1);
    int m = (l + r) >> 1;
    if (L <= m) update(L, R, c, lson);
    if (m < R) update(L, R, c, rson);
    PushUp(rt);
}
LL query(int L,int R,int l, int r, int rt) {
    if (L <= l && r <= R)
        return sum[rt];
    PushDown(rt, r - l + 1);
    int m = (l + r) >> 1;
    LL ret = 0;
    if (L <= m) ret += query(L, R, lson);
    if (m < R) ret += query(L, R, rson);
    return ret;
}

int main() {
//    freopen("input.txt", "r", stdin);
    int T, n, m;
    while (scanf("%d%d", &n, &m) != EOF) {
        memset(add, 0, sizeof (add));
        memset(sum, 0, sizeof (sum));
        for (int i = 1; i < n; ++i) scanf("%d", &w[i]);
        build(1, n - 1, 1);
        for (int i = 1; i <= m; ++i) {
            scanf("%d%d", &q[i].l, &q[i].r);
            if (q[i].l > q[i].r) swap(q[i].l, q[i].r);
            update1(q[i].l, q[i].r - 1, i, 1, n - 1, 1);
        }
        for (int i = m; i >= 1; --i)
            update2(q[i].l, q[i].r - 1, i, 1, n - 1, 1);
        for (int i = 1; i < n; ++i) {
            query1(i, i, 1, n - 1, 1);
            query2(i, i, 1, n - 1, 1);
        }
        buildsum(1, m, 1);
        for (int i = 1; i < n; ++i) {
            if (minn[i] == 0) continue;
            update(minn[i], maxx[i], w[i], 1, m, 1);
        }
        for (int i = 1; i <= m; ++i)
            printf("%lld\n", query(i, i, 1, m, 1));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值