Scalaz(10)- Monad:就是一种函数式编程模式-a design pattern

标签: 编程 scala scalaz functional programmi
661人阅读 评论(0) 收藏 举报
分类:

    Monad typeclass不是一种类型,而是一种程序设计模式(design pattern),是泛函编程中最重要的编程概念,因而很多行内人把FP又称为Monadic Programming。这其中透露的Monad重要性则不言而喻。Scalaz是通过Monad typeclass为数据运算的程序提供了一套规范的编程方式,如常见的for-comprehension。而不同类型的Monad实例则会支持不同的程序运算行为,如:Option Monad在运算中如果遇到None值则会中途退出;State Monad会确保状态值会伴随着程序运行流程直到终结;List Monad运算可能会产生多个结果等等。Scalaz提供了很多不同种类的Monad如:StateMonad, IOMonad, ReaderMonad, WriterMonad,MonadTransformer等等,这从另一个角度也重申了Monad概念在泛函编程里的重要性。听起来以上这些描述好像有点摸不着头脑,可能应该把它们放在本篇最终总结,不过我还是想让大家有个大的概念。对下面的讨论细节的理解能有所帮助。我们还是从Monad trait开始介绍吧:

trait Monad[F[_]] extends Applicative[F] with Bind[F] { self =>
  //// scalaz/Monad.scala

  override def map[A,B](fa: F[A])(f: A => B) = bind(fa)(a => point(f(a)))
...
trait Applicative[F[_]] extends Apply[F] { self =>
  //// scalaz/Applicative.scala
  def point[A](a: => A): F[A]
...
trait Apply[F[_]] extends Functor[F] { self =>
  //// scalaz/Apply.scala
  def ap[A,B](fa: => F[A])(f: => F[A => B]): F[B]
...
trait Bind[F[_]] extends Apply[F] { self =>
  //// scalaz/Bind.scala

  /** Equivalent to `join(map(fa)(f))`. */
  def bind[A, B](fa: F[A])(f: A => F[B]): F[B]

  override def ap[A, B](fa: => F[A])(f: => F[A => B]): F[B] = {
    lazy val fa0 = fa
    bind(f)(map(fa0))
  }
...

上面这些类型trait的继承关系是这样的:Monad继承了Applicative和Bind,Applicative继承了Apply, Apply继承了Functor, Bind也继承了Apply。所以Monad同时又是Applicative和Functor,因为Monad实现了map和ap函数。一个Monad实例可以调用所有Applicative和Functor提供的组件函数。任何实例只需要实现抽象函数point和bind就可以成为Monad实例,然后就可以使用Monad所有的组件函数了。

Monad所提供的主要注入方法(injected method)是在BindOps和MonadOps里。在BindOps里主要提供了flatMap: scalaz/syntax/BindSyntax.scala

final class BindOps[F[_],A] private[syntax](val self: F[A])(implicit val F: Bind[F]) extends Ops[F[A]] {
  ////
  import Liskov.<~<, Leibniz.===

  def flatMap[B](f: A => F[B]) = F.bind(self)(f)

  def >>=[B](f: A => F[B]) = F.bind(self)(f)

  def ∗[B](f: A => F[B]) = F.bind(self)(f)
...


主要是这个flatMap函数,在scalaz里用>>=来表示。这是一个大家都起码耳熟的函数:好像flatMap就代表了Monad。在MonadOps里提供的注入方法如下:scalaz/Syntax/MonadSyntax.scala

final class MonadOps[F[_],A] private[syntax](val self: F[A])(implicit val F: Monad[F]) extends Ops[F[A]] {
  ////

  def liftM[G[_[_], _]](implicit G: MonadTrans[G]): G[F, A] = G.liftM(self)

  def whileM[G[_]](p: F[Boolean])(implicit G: MonadPlus[G]): F[G[A]] = F.whileM(p, self)

  def whileM_(p: F[Boolean]): F[Unit] = F.whileM_(p, self)

  def untilM[G[_]](p: => F[Boolean])(implicit G: MonadPlus[G]): F[G[A]] = F.untilM(self, p)

  def untilM_(p: => F[Boolean]): F[Unit] = F.untilM_(self, p)

  def iterateWhile(p: A => Boolean): F[A] = F.iterateWhile(self)(p)

  def iterateUntil(p: A => Boolean): F[A] = F.iterateUntil(self)(p)

  ////
}

看起来这些注入方法都是一些编程语言里的流程控制语法(control flow syntax)。这是不是暗示着Monad最终会实现某种编程语言?我们把这些函数的使用方法放在后面的一些讨论去。我们先来分析一下flatMap函数,因为这是个Monad代表函数。下面是Functor,Applicative和Monad施用函数格式比较:

// Functor    :  map[A,B]    (F[A])(f:   A => B):  F[B]
// Applicative:  ap[A,B]     (F[A])(f: F[A => B]): F[B] 
// Monad      :  flatMap[A,B](F[A])(f: A => F[B]): F[B]


以上三种函数款式基本上是一致的。大家都说这就是三种FP的函数施用方式:在一个容器内进行函数的运算后把结果还留在容器内、得到的效果是这样的:F[A] => F[B]。只是它们分别用不同的方式提供这个施用的函数。Functor的map提供了普通函数,Applicative通过容器提供了施用函数ap而Monad则是通过直接函数施用方式来实现F[A] => F[B]: 直接对输入A进行函数施用并产生一个F[B]结果。Monad的这种方式应该不是严格意义上的在容器内进行函数施用。从另一个角度分析,Monad可以被视作某种算法(computation)。Monad F[A]代表了对一个A类型数据的算法(computation)。如果这样说那么Monad就有了全新的解释:Monad就是一种可以对某种类型的数据值进行连续计算的算法(computation):如果我们把flatMap串联起来的话就会是这样的:

//   fa.flatMap(a => fb.flatMap(b => fc.flatMap(c => fd.map(...))))

在这里fa,fb,fc都是F[T]这样的算法。可以看出当我们把flatMap串接起来后就形成了一个串型(sequencial)流程(workflow)的F[]算法。为了更清楚的了解串接flatMap的意义,我们用同等的for-comprehension来示范:
//   for {
//      a <- (fa: F[A])
//      b <- (fb: F[A])
//      c <- (fc: F[A])
//   } yield { ... }

这样表达会更加清晰了:我们先运算fa,得到结果a后接着运算fb,得出结果b后再运算fc,得出结果c ... 这像是一段行令程序(imperative program)。我们再用个形象点的例子来示范说明:
class Foo { def bar: Option[Bar] }
class Bar { def baz: Option[Baz] }
class Bar { def baz: Option[Baz] }

def compute(maybeFoo: Option[Foo]): Option[Int] =
 maybeFoo.flatMap { foo =>
  foo.bar.flatMap { bar =>
    bar.baz.map { baz =>
      baz.compute
    }
  }
 }
def compute2(maybeFoo: Option[Foo]): Option[Int] =
  for {
  	foo <- maybeFoo
  	bar <- foo.bar
  	baz <- bar.baz
  }  yield baz.compute

可以看出,每一个算法都依赖前面算法得出的结果。从这个例子我们可以得出Monad的串型运算(sequencial computation)特性。确切来说,flatMap并不适合并行运算,所以我们需要Applicative。这是因为Applicative是在既有的容器中运算,而flatMap则会重新创建新的容器(在Monad的世界里容器即为算法(computation)。但是因为我们讲过Monad就是Applicative,所以Monad也可以实现并行运算。Applicative 的 ap 函数可以用 flatMap实现:

// ap[A,B](ma: F[A])(mf: F[A => B]): F[B] = mf.flatMap(f => ma.flatMap(a => point(f(a)))  


也可以用flatMap来实现Functor的map函数:
// map[A,B](fa: F[A])(f: A => B): F[B] = fa.flatMap(a => point(f(a)))  


从上面的例子好像可以领悟一些关于FP即Monadic Programming的说法。形象的来讲:这个所谓的算法Monad F[]就好像是在F[]这么个壳子里进行传统编程:还记着的话,FP编程既是纯函数(pure function)对F[T]里的T值进行运算,没有中间变量(temp variable),没有副作用(no side-effect)。但现在有了Monad,我们就可以使用传统的行令编程(imperative programming)了。再形象一点来说上面的for loop就像F[]壳子,在for loop内可以进行申明变量,更新状态等OOP式行令编程。但这些变化(mutability)不会漏出for loop之外。不过,本篇所述Monad编程的单一局限性还是很明显的:因为在for loop 内部的操作函数都必须返回同一种类型的Monad实例如:Option[], List[],SomeType[]等等。而且程序运算行为只会受一种类型的特性所控制。如上面所叙,Monad实例的类型控制Monadic程序的运算行为。每一种Monad实例的程序可以有不同的运算方式。如果需要多种类型行为的Monad程序,就需要使用Monad Transformer typeclass了。这个在将来的讨论中自会提及,现在好像说的过头了。我们还是回到Monad的基本操作。

Option是scala标准库的一个类型。它已经是个Monad,所以可以使用flatMap:

2.some flatMap {x => (x + 3).some }               //> res0: Option[Int] = Some(5)
2.some >>= { x => (x + 3).some }                  //> res1: Option[Int] = Some(5)
(none: Option[Int]) >>= {x => (x + 3).some }      //> res2: Option[Int] = None


我们可以用Monad[T] point来把一个普通值A升格到T[A]:

Monad[Option].point(2)                            //> res3: Option[Int] = Some(2)
Monad[Option].point(2) >>= {x => Monad[Option].point(x + 3)}
                                                  //> res4: Option[Int] = Some(5)
(None: Option[Int]) >>= {x => Monad[Option].point(x + 3)}
                                                  //> res5: Option[Int] = None


在上面的例子里我们不断提及Option Monad是有原因的,因为Option类型的Monad典型实例,在控制运算流程时最有特点:可以在中途退出,在遇到None值时可以立即终止运算。

我们用一个比较现实点的例子来示范:我正尝试用自己的方式来练习举重 - 我最多能举起50KG、每个杠铃片重2.5公斤、杠铃两端不必平衡,但一边不得超过另一边多于3个杠铃片(多3个还没问题)。试着用一个自定义类型来模拟举重:

type Discs = Int  //杠铃片数量
case class Barbell(left: Discs, right: Discs) {
	def loadLeft(n: Discs): Barbell = copy(left = left + n)
	def loadRight(n: Discs): Barbell = copy(right = right + n)
}
Barbell(0,0).loadLeft(1)                          //> res8: Exercises.monad.Barbell = Barbell(1,0)
Barbell(1,0).loadRight(1)                         //> res9: Exercises.monad.Barbell = Barbell(1,1)
Barbell(2,1).loadLeft(-1)                         //> res10: Exercises.monad.Barbell = Barbell(1,1)

现在这个自定义类型Barbell是可以跟踪当前杠铃左右重量状态的。现在我把往杠铃上增加重量片的过程串联起来:

Barbell(0,0).loadLeft(1).loadRight(2).loadRight(100).loadLeft(2).loadRight(-99)
                                                  //> res11: Exercises.monad.Barbell = Barbell(3,3)

可以看到这个过程中有些环节已经超出了我的能力,但杠铃最终状态好像还是合理的。我们需要在重量配置不合理的时候就立即终止。现在我们可以用Option来实现这项功能:

type Discs = Int  //杠铃片数量
case class Barbell(left: Discs, right: Discs) {
  def loadLeft(n: Discs): Option[Barbell] = copy(left = left + n) match {
    case Barbell(left,right) => if ( (left+right <= 20) && math.abs(left-right) <=3 ) Some(Barbell(left,right)) else None
    case _ => None
  }
  def loadRight(n: Discs): Option[Barbell] = copy(right = right + n) match {
    case Barbell(left,right) => if ( (left+right <= 20) && math.abs(left-right) <=3 ) Some(Barbell(left,right)) else None
    case _ => None
  }
}
Barbell(0,0).loadLeft(1)                          //> res8: Option[Exercises.monad.Barbell] = Some(Barbell(1,0))
Barbell(1,0).loadRight(1)                         //> res9: Option[Exercises.monad.Barbell] = Some(Barbell(1,1))
Barbell(2,1).loadLeft(-1)                         //> res10: Option[Exercises.monad.Barbell] = Some(Barbell(1,1))
Barbell(0,0).loadLeft(4)                          //> res11: Option[Exercises.monad.Barbell] = None
Barbell(15,1).loadRight(15)                       //> res12: Option[Exercises.monad.Barbell] = None


超出重量平衡的情况返回了None。现在返回值是个Option,而Option是个Monad,所以我们可以用flatMap把每个环节串联起来:

Barbell(0,0).loadLeft(3) >>= {_.loadRight(3)}     //> res13: Option[Exercises.monad.Barbell] = Some(Barbell(3,3))
Barbell(0,0).loadLeft(3) >>= {_.loadRight(3) >>= {_.loadRight(1)}}
                                                  //> res14: Option[Exercises.monad.Barbell] = Some(Barbell(3,4))
Barbell(0,0).loadLeft(3) >>= {_.loadRight(3) >>= {_.loadRight(1) >>= {_.loadLeft(4)}}}
                                                  //> res15: Option[Exercises.monad.Barbell] = Some(Barbell(7,4))
Barbell(0,0).loadLeft(1) >>= {_.loadRight(5) >>= {_.loadLeft(2)}}
                                                  //> res16: Option[Exercises.monad.Barbell] = None
Monad[Option].point(Barbell(0,0)) >>= {_.loadLeft(3) >>= {_.loadRight(6)}}
                                                  //> res17: Option[Exercises.monad.Barbell] = Some(Barbell(3,6))

我们的最终目的是用for-comprehension来表述,会更加清晰:

def addWeight: Option[Barbell] = for {
	b0 <- Monad[Option].point(Barbell(0,0))
	b1 <- b0.loadLeft(3)
	b2 <- b1.loadRight(3)
} yield b2                                        //> addWeight: => Option[Exercises.monad.Barbell]
addWeight                                         //> res18: Option[Exercises.monad.Barbell] = Some(Barbell(3,3))

def addWeight1: Option[Barbell] = for {
	b0 <- Monad[Option].point(Barbell(0,0))
	b1 <- b0.loadLeft(4)
	b2 <- b1.loadRight(3)
} yield b2                                        //> addWeight1: => Option[Exercises.monad.Barbell]
addWeight1                                        //> res19: Option[Exercises.monad.Barbell] = None

从以上的例子可以得出:实现了一个数据类型的Monad实例后就可以获取以这个类型控制运算行为的一种简单的编程语言,这种编程语言可以在for loop内部实现传统的行令编程风格。

在本篇讨论中我们介绍了Monad实际上是一种编程模式,并且示范了简单的for loop内部流程运算。在下面的一系列讨论中我们将会了解更多类型的Monad,以及Monad如何能成为功能完善的编程语言。













查看评论

Scalaz(25)- Monad: Monad Transformer-叠加Monad效果

中间插播了几篇scalaz数据类型,现在又要回到Monad专题。因为FP的特征就是Monad式编程(Monadic programming),所以必须充分理解认识Monad、熟练掌握Monad运用。曾...
  • TIGER_XC
  • TIGER_XC
  • 2016-01-20 08:43:40
  • 503

一行代码让FP死机(转载)

导读:   死機程式的變化型還多出十幾種以上呢!   主要都是使用 RegExp 產生的死機狀況   這次死機狀況略有不同   執行之後,會發現 Flash Player 視窗根本跑不出來   然後 ...
  • zinking3
  • zinking3
  • 2007-10-20 22:02:00
  • 731

Writer和Reader

这两个monad是值得学习和使用的(尤其是Reader)   1. Writer这个monad是将附加一个monoid到指定的一个值,我们当且把他看作是其名字说的write的过程   最简单...
  • u013571243
  • u013571243
  • 2015-11-07 00:00:55
  • 453

【函数式】Monads模式初探——Monad概念

单子单子(Monad)是一种将函子组合应用的方法。在计算机科学里,单子经常用来代表计算(computation)。单子能用来把与业务无关的通用程序行为抽象出来,比如有用来处理并行(Future)、异常...
  • JasonDing1354
  • JasonDing1354
  • 2016-03-05 21:14:00
  • 3394

Scala与Clojure函数式编程

  • 2015年06月04日 19:12
  • 7.05MB
  • 下载

函数式编程:Functor、Applicative 和 Monad

Functor、Applicative 和 Monad 是函数式编程语言中三个非常重要的概念,尤其是 Monad ,难倒了不知道多少英雄好汉。事实上,它们的概念是非常简单的,但是却很少有文章能够将它们...
  • qq_16379603
  • qq_16379603
  • 2015-11-11 11:21:35
  • 356

Game Programming Patterns游戏编程模式

  • 2014年11月22日 21:13
  • 6.54MB
  • 下载

简单介绍函数式编程中的Functor(函子),Applicative(加强版函子),Monad(单子)

原文地址:http://skaka.me/blog/2015/12/19/functor-applicative-monad-scala-haskell/ 如果你是刚接触函数式编程,可能很容易被下...
  • pingyan158
  • pingyan158
  • 2016-10-09 11:10:20
  • 860

Scala与Clojure函数式编程模式(高清带书签).pdf

  • 2018年04月16日 21:05
  • 34.04MB
  • 下载

Java程序员必备秘籍 Scala与Clojure函数式编程语言

编程世界就好比江湖,各种技术与思想有如各种内外家功夫在历史的舞台上纷呈登场,各领风骚。如今,自C、C++传承而来的以Java为代表的命令式语言一派可谓如日中天、门徒万千。多年来,这几门语言一直占据着T...
  • turingbooks
  • turingbooks
  • 2015-05-19 09:42:11
  • 2318
    个人资料
    持之以恒
    等级:
    访问量: 8万+
    积分: 2737
    排名: 1万+
    最新评论