- 博客(140)
- 资源 (1)
- 收藏
- 关注

原创 基于改进YOLOv8的景区行人检测算法
该研究通过创新数据集TAPDataset,优化模型YOLOv8-L,融合注意力机制与上采样算子,提升小目标检测性能,并验证了泛化性能,为行人检测提供了新的资源和算法优化,显著提升了景区行人检测的精度和效率。
2024-08-17 19:55:22
1716
1

原创 具有重新参数化异构卷积的多分支辅助融合YOLO,用于精确的目标检测(MAF-YOLO)
由于多尺度特征融合的有效性能,路径聚合 FPN (PAFPN) 被广泛应用于 YOLO 检测器中。然而,它不能有效地、自适应地同时集成高层语义信息和低层空间信息。我们在本文中提出了一种名为 MAF-YOLO 的新模型,它是一种新颖的目标检测框架,具有多功能颈部,称为多分支辅助 FPN(MAFPN)。在 MAFPN 中,浅层辅助融合(SAF)模块旨在将骨干和颈部的输出结合起来,保留最佳水平的浅层信息,以促进后续学习。同时,深深嵌入颈部的高级辅助融合(AAF)模块向输出层传递更多样化的梯度信息。
2024-08-15 20:18:50
3742

原创 精确的目标检测中定位置信度的获取
Borui Jiang∗1,3, Ruixuan Luo∗1,3, Jiayuan Mao∗2,4,Tete Xiao1,3, and Yuning Jiang41School of Electronics Engineering and Computer Science, Peking University2ITCS, Institute for Interdisciplinary Inf...
2019-11-29 12:34:31
13173

原创 距离IoU损失:包围盒回归更快更好的学习(Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression)
Distance-IoU Loss: Faster and Better Learning for Bounding Box RegressionZhaohui Zheng1, Ping Wang1, Wei Liu2, Jinze Li3, Rongguang Y e1, Dongwei Ren*21School of Mathematics, Tianjin University, Ch...
2019-11-28 22:39:29
6742
12

原创 anchor free yolov1
1.YOLO的核心思想 YOLO的核心思想就是利用整张图作为网络的输入,直接在输出层回归bounding box的位置和bounding box所属的类别。 没记错的话faster RCNN中也直接用整张图作为输入,但是faster-RCNN整体还是采用了RCNN那种 proposal+classifier的思想,只不过是将提取proposal的步骤放在CNN中实现了。 ...
2019-10-10 21:54:42
477

翻译 Bag of Tricks for Image Classification with Convolutional Neural Networks(卷积神经网络在图像分类中的技巧)
来源:Tong He Zhi Zhang Hang Zhang Zhongyue Zhang Junyuan Xie Mu LAmazon Web Servicesfhtong,zhiz,hzaws,zhongyue,junyuanx,mlig@amazon.com论文链接:https://arxiv.org/pdf/1812.01187.pdf摘要最近在图像分类研究方面取得的许多...
2019-03-21 12:09:30
988

翻译 tensorflow一层神经网络训练手写体数字识别
# coding:utf-8# 导入tensorflow深度学习库和手写体数据集import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data# 定义好网络的训练迭代次数、学习率、droupmax_steps = 50000learning_rate = 0.001dropout =...
2018-04-28 22:31:58
312
原创 YOLO-SLD: An Attention Mechanism-ImprovedYOLO for License Plate Detection
本文提出了YOLO-SLD模型,改进YOLOv7以提升车牌检测准确性,集成SimAM注意力机制,首次在CCPD数据集上验证。模型在mAP@0.5值上达到98.91%,轻量化设计便于部署。未来研究将关注文本识别及模型优化。
2024-11-16 11:47:32
1336
2
原创 YOLOv8代码汇总
https://github.com/Jai-wei/YOLOv8-PySide6-GUIhttps://github.com/DataXujing/YOLOv8https://github.com/bubbliiiing/yolov8-pytorchhttps://github.com/mgonzs13/yolov8_ros
2024-10-21 10:07:38
478
1
原创 SOD-YOLOv8 - 增强YOLOv8以在交通场景中检测小目标
提出了Small Object Detection YOLOv8 (SOD-YOLOv8),这是一种专门针对涉及众多小目标场景的新颖模型。 受到Efficient Generalized Feature Pyramid Networks (GFPN)的启发,作者在YOLOv8中增强多路径融合,以合并多层级的特征,保留浅层细节并提高小目标检测精度。 引入第4个检测层用于有效利用高维度的空间信息。 C2f-EMA模块中的高效多尺度注意力模块(EMA)通过重新分配权重和优先考虑相关特征增强特征提取。
2024-10-20 22:08:32
1941
原创 吴恩达弟子打造arXiv弹幕版,每篇论文都能自由讨论了!
只需把URL中的arXiv替换成AlphaXiv,就能对任意一篇论文发布提问或讨论。或者是下载插件,网页上就会多出一个Discuss的入口,点开是一样的效果。现在,arXiv的每篇论文,都能直接提问讨论了!
2024-08-15 19:30:43
290
原创 YOLOv10:实时端到端目标检测
在过去的几年里,YOLO因其在计算成本和检测性能之间的有效平衡而成为实时目标检测领域的主要范例。研究人员对 YOLO 的架构设计、优化目标、数据增强策略等进行了探索,取得了显着进展。然而,后处理对非极大值抑制(NMS)的依赖阻碍了 YOLO 的端到端部署,并对推理延迟产生不利影响。此外,YOLO中各个组件的设计缺乏全面彻底的检查,导致明显的计算冗余并限制了模型的能力。它提供了次优的效率,以及相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构方面进一步提升 YOLO 的性能效率边界。
2024-05-28 22:44:33
2498
2
原创 End-to-End Object Detection with Transformers(DETR)
3. **自定义查询(Learnable Queries)**:DETR使用一系列可学习的查询向量来表示目标的位置和类别,这些查询在解码器中与编码器的输出进行注意力交互,以产生最终的检测结果。5. **位置和边界框预测**:解码器的输出还包括用于预测目标边界框的信息。7. **可变形注意力(Deformable Attention)**:在一些变体中,如Deformable DETR,引入了可变形注意力模块,它结合了稀疏空间采样和Transformer的关系建模能力,进一步提高了模型对目标定位的准确性。
2024-02-03 11:58:22
1164
原创 YOLOX:2021年超越YOLO系列
在本报告中,我们对YOLO系列进行了一些有经验的改进,形成了一种新的高性能探测器-YOLOX。我们将YOLO探测器切换到无锚点的方式,并采用了其他先进的检测技术,即解耦头部和领先的标签分配策略Simota,以在大范围的模型上实现最先进的结果:对于仅有0.91M参数和1.08G Flop的YOLONano,我们在COCO上获得了25.3%的AP,比NanoDet高出1.8%AP;对于行业中使用最广泛的检测器之一YOLOv3,我们在COCO上将其提升到47.3%AP,超过当前最佳实践3.0%AP;
2023-08-09 22:23:47
624
原创 RetinaFace: Single-stage Dense Face Localisation in the Wild
尽管在不受控制的人脸检测方面已经取得了巨大的进步,但在野外准确高效的人脸定位仍然是一个公开的挑战。本文提出了一种鲁棒的单阶段人脸检测器,名为RetinaFace,它利用联合超监督和自我监督多任务学习的优势,对不同尺度的人脸进行像素级的人脸定位。............
2022-07-31 23:00:03
1412
原创 国内生产总值(GDP)数据可视化
数据来源:数据详情_ 数据_中国政府网import pandas as pddata = pd.read_excel('GDP.xls')序号 统计时间 国内生产总值(亿元) 国内生产总值季度累计同比增长(%) 第一产业增加值(亿元) 第一产业增加值季度累计同比增长(%) 第二产业增加值(亿元) 第二产业增加值季度累计同比增长(%) 第三产业增加值(亿元) 第三产业增加值季度累计同比增长(%)0 1 2017第1-2季度 383818.0 7.0 20850....
2022-04-01 00:59:55
4869
2
原创 SSD: Single Shot MultiBox Detector
Wei Liu1 , Dragomir Anguelov2 , Dumitru Erhan3 , Christian Szegedy3 , Scott Reed4 , Cheng-Yang Fu1 , Alexander C. Berg1 1UNC Chapel Hill 2Zoox Inc. 3Google Inc. 4University of Michigan, Ann-Arbor 1wli...
2021-12-01 23:48:29
734
原创 Scale Match for Tiny Person Detection
Xuehui Y u Y uqi Gong Nan Jiang Qixiang Ye Zhenjun Han∗University of Chinese Academy of Sciences, Beijing, China{yuxuehui17,gongyuqi18,jiangnan18}@mails.ucas.ac.cn {qxye,hanzhj}@ucas.ac.cn随着深卷...
2021-12-01 23:45:24
416
原创 暑期准备编写python编程类的文章、基础深度学习理论7月20~8月20
1、需要先完成几本python的阅读2、编写教案做PPT3、编写代码并上传到GitHub4、相关论文的阅读
2021-06-24 19:31:25
211
原创 tensorflow2.X实战系列softmax函数
softmax 原理斯坦福大学CS224n课程中softmax的解释:代码知识点1、NumPy数组是一个多维数组对象,称为ndarray。数组的下标从0开始,同一个NumPy数组中所有元素的类型必须是相同的。2、数组数组(Array)是有序的元素序列。若将有限个类型相同的变量的集合命名,那么这个名称为数组名。组成数组的各个变量称为数组的分量,也称为数组的元素,有时也称为下标变量。用于区分数组的各个元素的数字编号称为下标。数组是在程序设计中,为了处理方便, 把具有相同类型..
2021-04-20 00:43:07
621
原创 深度学习卷积神经网络论文研读-AlexNet
AlexNet模型来源于论文-ImageNet Classification with Deep Convolutional Neural Networks,作者Alex Krizhevsky,Ilya Sutskever,Geoffrey E.Hinton. 摘要 我们训练了一个大型的深度卷积神经网络,将ImageNet LSVRC-2010比赛中的120万幅...
2021-04-05 22:53:51
2428
1
原创 检测器:用递归特征金字塔和可切换的阿托洛斯卷积检测物体
Abstract许多现代的目标探测器都采用了“三思”机制,表现出了优异的性能。本文将此机制应用于目标检测的主干设计中。在宏层次上,我们提出了递归特征金字塔,它将来自特征金字塔网络的额外反馈连接合并到自下而上的主干层中。在微观层面上,我们提出了可切换的阿托拉斯卷积,该卷积以不同的阿托拉斯速率卷积特征,并使用开关函数收集结果。将它们结合在一起形成检测器,大大提高了目标检测的性能。在COCO测试开发平台上,检测器实现了目标检测54.7%的box-AP状态,实例分割47.1%的mask-AP状态,全景分割49.
2020-06-05 11:43:28
1740
1
原创 Squeeze-and-Excitation Networks(挤压和激励网络)
Squeeze-and-Excitation Networksie Hu[0000−0002−5150−1003]Li Shen[0000−0002−2283−4976]Samuel Albanie[0000−0001−9736−5134]Gang Sun[0000−0001−6913−6799]Enhua Wu[0000−0002−2174−1428]Abstract 卷积神经网络(CNNs)的核心构造块是卷积算子,它使网络能够通过融合各层局部感受野中的空间和信道信息来构造信息特征。.
2020-05-31 19:04:48
11338
2
原创 轻量级人脸检测算法实现专题之LFFD:A Light and Fast Face Detector for Edge Devices
LFFD:A Light and Fast Face Detector for Edge DevicesGithub star:919参数量:6.1 M一筐款通吃大小目标、支持各种设备的人脸检测器paper:https://arxiv.org/abs/1904.10633Github:https://github.com/YonghaoHe/A-Light-and-Fast-F...
2020-04-29 23:54:02
2194
原创 Focal Loss for Dense Object Detection(密集目标检测中的焦距损失)
Focal Loss for Dense Object Detection原文链接:https://arxiv.org/pdf/1708.02002.pdf作者信息: Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollár ...
2020-03-02 18:29:43
2656
原创 深度学习网络结构设计:ASFF- 自适应空间特征融合
ASFF它学习了空间过滤冲突信息以抑制不一致性的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。详细原理和工程代码可参考另外一篇博文:https://blog.csdn.net/TJMtaotao/article/details/103216377代码如下:import torchimport torch.nn as nnimport torch.nn.funct...
2020-02-24 11:18:44
12309
1
原创 深度学习卷积神经网络重要结构之通道注意力和空间注意力模块
提出CBAM的作者主要对分类网络和目标检测网络进行了实验,证明了CBAM模块确实是有效的。以ResNet为例,论文中提供了改造的示意图,如下图所示:在ResNet中的每个block中添加了CBAM模块,训练数据来自benchmark ImageNet-1K。检测使用的是Faster R-CNN, Backbone选择的ResNet34,ResNet50, W...
2020-02-24 00:47:06
17323
10
原创 RetinaFace: Single-stage Dense Face Localisation in the Wild
Abstract尽管在不受控制的人脸检测方面已经取得了巨大的进步,但准确有效的野外人脸定位仍然是一个公开的挑战。提出了一种鲁棒的单级人脸检测算法RetinaFace,该算法利用多任务联合额外监督学习和自监督学习的优点,对不同尺度的人脸进行像素级定位。具体来说,我们在以下五个方面做出了贡献:(1)我们在更宽的人脸数据集上手动标注了五个面部标志点,并在这个额外的监督信号的帮助下观察到硬脸检测的显著...
2020-02-23 12:15:42
982
原创 python keras SSD实战
参考博文:https://blog.csdn.net/weixin_44791964/article/details/104107271参考代码:https://github.com/bubbliiiing/ssd-keras原理理解step1 网络结构部分
2020-02-22 17:29:22
756
转载 两阶段目标检测原理详细版
原文链接:http://www.telesens.co/2018/03/11/object-detection-and-classification-using-r-cnns/Object Detection and Classification using R-CNNs源码链接:https://github.com/ruotianluo/pytorch-faster-rcnnSect...
2020-01-10 17:40:49
3331
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人