题意
n个节点,m条边,每条边都有权重,Q次询问,每次询问附带一个正整数x代表,有规模为x的军队,能通过权重>=x的路。如果两个节点能互相到达,则算一个有效对,求针对军队规模为x,有几个有效对。
解析
- 很容易的发现每次询问附带的军队规模x具有单调性,x如果越大,答案越小,反之答案越大。那么可以离线存储询问,对询问的规模进行排序,从规模大开始计算,然后越来越小,答案递增。
- 对于一个确定大小为 s s s的连通块,其对答案贡献是固定的为 s ∗ ( s − 1 ) 2 \frac{s*(s-1)}{2} 2s∗(s−1),对于某两个连通块,因为x变小了,使得两个连通块链接在一起,变得更大了,我们只需要减去原两个的贡献度,维护连通块的算法当然是——并查集!
- 那么问题来了,我们如何根据答案变小而找出影响了哪些边呢?很简单用优先队列存边即可。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
ll f[N];
ll sz[N];
pair<int,int> qs[N];
ll ans[N];
int find(int i){
return f[i]==i? i: f[i]=find(f[i]);
}
ll merge(int a,int b){
if(a>b)swap(a,b);
int fa=find(a),fb=find(b);
f[fa]=fb;
sz[fb]+=sz[fa];
return sz[fb];
}
struct edge{
ll u,v,w;
bool operator < (const edge a)const{
return w<a.w;
}
};
ll get(ll x){
return x*(x-1)/2;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
int n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++){
f[i]=i;
sz[i]=1;
}
priority_queue<edge,vector<edge>>pq;
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
pq.push({u,v,w});
}
for(int i=1;i<=q;i++){
scanf("%d",&qs[i].first);
qs[i].second=i;
}
sort(qs+1,qs+1+q,greater<pair<int,int>>());
ll res=0;
// cout<<qs[1].first<<" "<<pq.top().w<<endl;
for(int i=1;i<=q;i++){
int x=qs[i].first;
while(!pq.empty() && pq.top().w>=x){
auto t=pq.top();
pq.pop();
int u=t.u;
int v=t.v;
if(find(u)!=find(v)){
res-=get(sz[find(u)])+get(sz[find(v)]);
res+=get(merge(u,v));
}
}
ans[qs[i].second]=res;
}
for(int i=1;i<=q;i++){
cout<<ans[i]<<endl;
}
}
}