The 15th Chinese Northeast Collegiate Programming Contest K.CITY 离线单调+并查集连通+优先队列

在这里插入图片描述

题意

n个节点,m条边,每条边都有权重,Q次询问,每次询问附带一个正整数x代表,有规模为x的军队,能通过权重>=x的路。如果两个节点能互相到达,则算一个有效对,求针对军队规模为x,有几个有效对。

解析

  1. 很容易的发现每次询问附带的军队规模x具有单调性,x如果越大,答案越小,反之答案越大。那么可以离线存储询问,对询问的规模进行排序,从规模大开始计算,然后越来越小,答案递增。
  2. 对于一个确定大小为 s s s的连通块,其对答案贡献是固定的为 s ∗ ( s − 1 ) 2 \frac{s*(s-1)}{2} 2s(s1),对于某两个连通块,因为x变小了,使得两个连通块链接在一起,变得更大了,我们只需要减去原两个的贡献度,维护连通块的算法当然是——并查集!
  3. 那么问题来了,我们如何根据答案变小而找出影响了哪些边呢?很简单用优先队列存边即可。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
ll f[N];
ll sz[N];
pair<int,int> qs[N];
ll ans[N];
int find(int i){
    return f[i]==i? i: f[i]=find(f[i]);
}
ll merge(int a,int b){
    if(a>b)swap(a,b);
    int fa=find(a),fb=find(b);
    f[fa]=fb;
    sz[fb]+=sz[fa];
    return sz[fb];
}
struct edge{
    ll u,v,w;
    bool operator < (const edge a)const{
        return  w<a.w;
    }
};
ll get(ll x){
    return x*(x-1)/2;
}
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        int n,m,q;
        scanf("%d%d%d",&n,&m,&q);
        for(int i=1;i<=n;i++){
            f[i]=i;
            sz[i]=1;
        }
        priority_queue<edge,vector<edge>>pq;
        for(int i=1;i<=m;i++){
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            pq.push({u,v,w});
        }
        for(int i=1;i<=q;i++){
            scanf("%d",&qs[i].first);
            qs[i].second=i;
        }
        sort(qs+1,qs+1+q,greater<pair<int,int>>());
        ll res=0;
//        cout<<qs[1].first<<" "<<pq.top().w<<endl;
        for(int i=1;i<=q;i++){
            int x=qs[i].first;
            while(!pq.empty() && pq.top().w>=x){
                auto t=pq.top();
                pq.pop();
                int u=t.u;
                int v=t.v;
                if(find(u)!=find(v)){
                    res-=get(sz[find(u)])+get(sz[find(v)]);
                    res+=get(merge(u,v));
                }
            }
            ans[qs[i].second]=res;
        }
        for(int i=1;i<=q;i++){
            cout<<ans[i]<<endl;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值