分析
这题有好几种方法可以做,有跑最短路的,有些最小生成树的。这里介绍最短路的方法。
单源最短路径,很自然地想到 Dijkstra。不过题目要求的是最大值最小,所以松弛就要改成:
if(dis[v]>max(dis[u],e[i].w))
dis[v]=max(dis[u],e[i].w);
代码实现
#include <bits/stdc++.h>
using namespace std;
int n,m,s,t;
struct edge{
int to,nxt,w;
}e[(int)2e4<<1];
int head[10005],idx;
void link(int x,int y,int w){
e[++idx]={y,head[x],w};
head[x]=idx;
}
struct poi{
int d,p;
bool operator<(const poi&x)const{return d>x.d;}
};
priority_queue<poi>q;
int dis[10005];
bool vis[10005];
int main(){
cin>>n>>m>>s>>t;
for(int i=1,x,y,z;i<=m;i++){
cin>>x>>y>>z;
link(x,y,z);
link(y,x,z);
}
memset(dis,0x3f3f3f3f,sizeof(dis));
dis[s]=0;
q.push(poi{0,s});
while(!q.empty()){
int u=q.top().p;q.pop();
if(vis[u])continue;
vis[u]=true;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(dis[v]>max(dis[u],e[i].w)){
dis[v]=max(dis[u],e[i].w);
q.push(poi{dis[v],v});
}
}
}
cout<<dis[t];
return 0;
}