前言
语音合成(Text To Speech,TTS)技术将文本转化为声音,目前广泛应用于语音助手、智能音箱、地图导航等场景。TTS的实现涉及语言学、语音学的诸多复杂知识,因实现细节的不同,TTS系统合成的语音在准确性、自然度、清晰度、连贯性等方面也有着不一样的表现,如何从多维度评价TTS系统质量成了TTS测试人员的一大挑战。本文针对TTS前端、后端的问题介绍了一种包括主观评测、客观评测TTS测试方法。
一、前端后端问题
当前典型的TTS系统可分为前端、后端两部分,前端完成输入文本的归一化、分词、发音预测、韵律结构预测的处理,后端对声音建模,通过学习得到声音参数,最后由声码器合成声音。
由于自然语言本身的复杂性和开放性,前端处理部分难度较大,难以覆盖所有情况,可能引入的问题举例如下:
1、发音错误。汉语中的多音字、数字、专有名词根据上下文的不同,发音也不一样,训练语料的覆盖不全,会导致合成的语音中部分字词的发音错误。另外现在国际化背景下,各类中英混合语料、缩略词、符号的存在,也为发音预测带来了巨大挑战。
2、声调不准。中文在实际口语发音时,存在一系列复杂的的变调规则,如一/不变调,上声变调等。这类规则的处理不当会导致合成的语音与平时发音习惯不符,听来怪异。
3、韵律异常。前端通过语法词分词、韵律词分词、断句等方式在文本中插入不同程度的停顿,通过时长预测控制字词的发音时长。分词、断句的错误会引起合成语音时的错误停顿,听起来节奏不当。
后端通过声音参数和声码器(WaveNet不在此列)合成语音波形,实际实现过程中无论是声音参数的选择,还是声码器的设计都是对真实发音过程的有损估计,无法百分百还原人声,可能引入的问题如下:
(1)清晰度差。合成的字、词发音不清晰,近音词区分度差;
(2)还原度差。合成音与目标说话人的音色有差异;
(3)杂音。在合成语音过程中引入背景噪声、字词间隔不顺畅。