java算法day13

java算法day13

  • 104 二叉树的最大深度
  • 111 二叉树的最小深度
  • 226 翻转二叉树
  • 101 对称二叉树
  • 100 相同的树

104 二叉树的最大深度

我最开始想到的是用层序遍历。处理每一层然后计数。思路非常的清楚。
迭代法:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        Deque<TreeNode> que = new ArrayDeque<>();
        int deepth = 0;
        //特判
        if(root==null){
            return deepth;
        }
        //还是根节点先入栈。思想就是层序遍历。每处理完一层,那么就计数+1。
        que.offerLast(root);
        while(!que.isEmpty()){
            int size = que.size();
            while(size>0){
                TreeNode temp = que.pollFirst();
                if(temp.left!=null){
                    que.offerLast(temp.left);
                }
                if(temp.right!=null){
                    que.offerLast(temp.right);
                }
                size--;
            }
            deepth++;
        }

        return deepth;
    }
}

递归解法在下面


111 二叉树的最小深度

我一开始想到的还是层序遍历。
唯一的变化就是判断什么时候停下来,就是处理节点的时候,如果某个节点没有叶子节点,那不就说明这层之后该节点就没有孩子嘞。就是最小深度。
迭代解法:

class Solution {
    public int minDepth(TreeNode root) {
        Deque<TreeNode> que = new ArrayDeque<>();
        if(root==null){
            return 0;
        }
        int count = 1;
        que.offerLast(root);
        while(!que.isEmpty()){
            int size = que.size();
            while(size>0){
                TreeNode temp = que.pollFirst();
                if(temp.left==null && temp.right==null){
                    return count;
                }
                if(temp.left!=null){
                    que.offerLast(temp.left);
                }
                if(temp.right!=null){
                    que.offerLast(temp.right);
                }
                size--;
            }
            count++;
            
        }
        return count;
    }
}

递归解法在下面


递归

接下来的题目几乎都用到了递归,这里就解决晕递归的问题。
写递归的时候要注意哪些?
1.不要一上来就扣细节,而是考虑这个过程中要做什么。
2.停止递归逻辑,处理逻辑,正常返回逻辑

这种在题解中称为子问题,和原问题模型。可以类比循环,在循环中我们总是要执行相同的逻辑,但是递归的特点在于,他需要在这个过程中,将计算的结果依次返给上一级。

想不到什么时候终止,就想想最底部的状态。
想不到处理逻辑怎么写,就想想如何进入下一层。

一句总结:想想怎么递下去,递到什么时候,什么时候归,归的过程中要干嘛。

二叉树的最大深度

思路:
正如递归的核心思想,不要上来就去扣递归的细节,而是想递归的过程中做了什么。

递归的过程我做了什么:最大的深度,就是左子树和右子树当中的最大深度,当返回上一层时,进行+1。

不从过程来考虑就是,return的结果就是左右子树的最大深度,然后到这一层嘞就是+1。感觉就是一眼看到了问题的本质。底部自己会去递归。

class Solution {
    public int maxDepth(TreeNode root) {
        if(root==null){
            return 0;
        }
        return Math.max(maxDepth(root.left),maxDepth(root.right))+1;
    }

    
}

二叉树的最小深度

一上来先粗略的考虑,这个思路是正确的,粗略的考虑就是递归计算左右子树的最小深度,每一层返回上来的时候再+1。

这题如果按最大深度那样去想就做不出来了。因为一旦按那个套路去做,就没想到这种情况。
如果按之前那个套路,递归去算左右子树的最小高度,那在第一个节点,就会直接取到min,这显然不是想要的答案。那显然这个时候就要把这种情况给排除。
排除的方式就是做判断:
1.如果有一个节点为null了,那么你要判断能不能往下走。两个节点都为null了你才可以停。
2.两个节点都不为null,那就计算左右子树最小高度。
请添加图片描述
在递归的过程中,计算左右最小深度。然后进行上面所说的特判。

class Solution {
    public int minDepth(TreeNode root) {
        if(root==null){
        //递归出口,能到这说明后面没路走了
            return 0;
        }
        //计算左右子树最小深度
        int leftDepth = minDepth(root.left);
        int rightDepth = minDepth(root.right);
        //对上面说的特殊情况做判断,判断属于哪种
        if(root.left==null){
            return rightDepth+1;
        }
        if(root.right==null){
            return leftDepth+1;
        }
		//都不是上面说的两种情况,那就是二者去min。
        return Math.min(leftDepth,rightDepth)+1;
    }
}

226 翻转二叉树

上来还是宏观上考虑,就是节点的左右子树不停的做swap操作。如果节点空了就退出。

想到了就直接这么写。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode invertTree(TreeNode root) {
        dfs(root);
        return root;
    }
	//每个节点都做reverse处理,然后下一层还是对左右子树做同样的处理。
    public void dfs(TreeNode root){
        if(root==null){
            return;
        }
        reverse(root);
        dfs(root.left);
        dfs(root.right);
    }
	//封装的一个函数。
    public void reverse(TreeNode root){
        TreeNode temp = root.left;
        root.left = root.right;
        root.right = temp;
    }
}

101 对称二叉树

这题看了这个图就知道递归过程中在干嘛了。请添加图片描述
向下的过程可以发现,一直在比较左节点的左孩子是否和右节点的右孩子相等,右节点的左孩子是否和左节点的右孩子相等。所以每层向下一直在做这件事。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSymmetric(TreeNode root) {
    //特判
        if(root==null){
            return true;
        }
        //开始递归
        return dfs(root.left,root.right);
    }

    boolean dfs(TreeNode left,TreeNode right){
    //递归出口
        if(left==null && right == null){
            return true;
        }
        //能走到这里,上一个判断没有出去,说明必有一为null。所以返回false
        if(left==null || right == null){
            return false;
        }
		//走到这说明两个都不为null,那就判断值
        if(left.val != right.val){
            return false;
        }
		//往下一层走,就是判断左节点的左孩子,和右节点的右孩子。
        return dfs(left.left,right.right) && dfs(left.right,right.left);
    }
}

100 相同的树

这个更是简单。在递归的过程中,单纯在比较二者左右孩子是否相等。

class Solution {
    public boolean isSameTree(TreeNode p, TreeNode q) {
        if(p==null && q == null){
            return true;
        }
        if(p==null || q==null){
            return false;
        }

        if(p.val != q.val){
            return false;
        }

        return isSameTree(p.left,q.left) && isSameTree(p.right,q.right);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值