java算法day16
- 112 路径总和
- 404 左叶子之和
- 513 找树左下角的值
112 路径总和
题型判定为自顶向下类型,并且为路径和类型。
那就套模板。
自顶向下就是从上到下处理,那么就是前序遍历的思想。
class Solution {
boolean res = false;
public boolean hasPathSum(TreeNode root, int targetSum) {
//特判
if(root==null&&targetSum==0){
return false;
}
//递归
dfs(root,targetSum);
return res;
}
//递归
void dfs(TreeNode root,int targetSum){
if(root==null){
return;
}
//过程就是不断往下递归,成功的条件是叶子节点,
targetSum-=root.val;
if(root.left==null && root.right==null & targetSum==0){
res = true;
}else{
//递归左右子树
dfs(root.left,targetSum);
dfs(root.right,targetSum);
}
}
}
本题得到的知识。
因为我是按模板做的,这个题我非常想在遇到结果的时候就立即返回。但是用模板做,那肯定会把全局走完。因此新知识就是怎么实现立即返回。
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root==null&&targetSum==0){
return false;
}
return dfs(root,targetSum);
}
boolean dfs(TreeNode root,int targetSum){
if(root==null){
return false;
}
targetSum-=root.val;
if(root.left==null && root.right==null & targetSum==0){
//完全可以直接返回
return true;
}
//核心思想在理解这里
return dfs(root.left,targetSum) || dfs(root.right,targetSum);
}
}
通过这个题,我对递归的理解又更近了一步,更新我的想法。
return dfs(root.left,targetSum) || dfs(root.right,targetSum);
这里的正确想法是,递归左右子树,实际上是递归到最左底层后,往上回溯一层,然后才是去递归右子树。所以根据短路操作,碰到返回true,那么反馈给上层,上层得到这个true,就会把还没递归的右子树给短路。实现了建制。要是按我之前的做法,回溯的过程,每个右子树都是会去递归的。在某些大型树的场景就效率低了。
404 左叶子之和
这题就两个难点,左叶子点怎么定义。如果你对什么是左叶子点很清楚,那这个题就很容易。
ps:千万别层序遍历去做,层序遍历根本判别不了叶子节点是左叶子节点还是右叶子节点
1、左叶子点:某点的左孩子节点,其左孩子节点的左右孩子都为null,那么这个节点就是左叶子点。
2、在递归的时候很容易空指针,如何解决?
用短路操作把容易空指针的提前断掉。
先序遍历的思想
class Solution {
int sum = 0;
public int sumOfLeftLeaves(TreeNode root) {
dfs(root);
return sum;
}
void dfs(TreeNode root){
if(root==null){
return ;
}
//这里就是我的短路操作,左叶子节点肯定不是往右走的,所以只用判左边是否为空。如果左边都为空了,那么结果不可能在那边。所以就不用执行后序的操作。
if(root.left!=null&&root.left.left==null && root.left.right==null){
sum+=root.left.val;
}
dfs(root.left);
dfs(root.right);
}
}
513 找树左下角的值
树左下角的值,题目给的定义就是,最后一层,最左的节点。
所以我当时就立马想到了层序遍历的做法,我在迭代每一层的元素的时候,每次把每一层的第一个元素的值存下来还是很容易的。因此马上做了出来。
class Solution {
public int findBottomLeftValue(TreeNode root) {
Deque<TreeNode> que = new ArrayDeque<>();
que.offerLast(root);
int res = 0;
while(!que.isEmpty()){
int size = que.size();
//每次扩展的时候,只存第一个扩展节点的值,全部处理完,结果就是这个
for(int i = 0;i<size;i++){
TreeNode temp = que.pollFirst();
//关键就在这,每层处理一下第一个节点。
if(i==0){
res = temp.val;
}
if(temp.left!=null){
que.offerLast(temp.left);
}
if(temp.right!=null){
que.offerLast(temp.right);
}
}
}
return res;
}
}
我提交之后发现,效率可以说非常的低。
递归解法:
要点:
1、实际上转化成了找深度最深的节点。
2、由于要保证最左,那递归的时候肯定优先递归左边,所以可以用先序遍历。
过程中的难点:
1、我在过程中老是在想一找到就立刻返回。实际上这是不太现实的。因为路没走完,你根本不可能知道哪个节点才是最深的。因此这个过程应该是不断的寻找最深节点,一旦找到更深的节点,那就应该把该点的值存下来。
2、起点深度怎么定其实无所谓的,最重要的是往下迭代深度的过程。所以一开始设置maxDepth=-1就行了,result=0。那么起点就一定要把maxDepth覆盖。
class Solution {
int maxDepth = -1;
int result = 0;
public int findBottomLeftValue(TreeNode root) {
dfs(root,0);
return result;
}
void dfs(TreeNode node,int depth){
if(node==null){
return ;
}
//我一开始从0相当于先走一步了,所以都是往下递归才+1.
if(depth>maxDepth){
maxDepth = depth;
result = node.val;
}
dfs(node.left,depth+1);
dfs(node.right,depth+1);
}
}