- 博客(12)
- 收藏
- 关注
原创 双目相机stereo-vision
为什么单目摄像机不能测深度?我们看到红色线条上三个不同远近的黑色的点在下方相机上投影在同一个位置,因此单目相机无法分辨成的像到底是远的那个还是近的那个。双目立体视觉深度相机测距流程:(1)需要对双目相机进行相机标定,得到两个相机的内外参数、单应矩阵。(2) 根据标定结果对原始图像进行图像校正,校正后的两张图像位于同一平面且互相平行。(3)双目匹配,对校正后的两张图像进行像素点匹配。(4)根据匹配结果计算每个像素的深度,从而获得深度图理想的双目相机模型:可求得深...
2022-03-25 20:30:37 7321
原创 深度相机(3D相机)
二维图片,人眼可以通过物体的相对位置关系判断物体距离的远近,而相机则不可以。深度相机(3D相机)就是终端和机器人的眼睛,其就是通过该相机能检测出拍摄空间的景深距离。通过深度相机获取到图像中每个点距离摄像头的距离,在加上该点在 2D 图像中的二维坐标,就能获取图像中每个点的三维空间坐标。结构光(Structured-light) 其原理是基本原理是,通过近红外激光器,将具有一定结构特征的光线投射到被拍摄物体上,再由专门的红外摄像头进行采集。这种具备一定结构的光线(根...
2022-03-24 21:01:45 18043 1
原创 k-means算法实现,--python
k-means算法思想:第一步,从文件中读取数据,点用元组表示,点集用列表表示。第二步,初始化聚类中心。首先获取数据的长度,然后在range(0,length)这个区间上随机产生k个不同的值,以此为下标提取出数据点,将它们作为聚类初始中心,产生列表center。第三步,分配数据点。将数据点分配到距离(欧式距离)最短的聚类中心中,产生列表assigment,并计算平均误差。第四步,如果首次分配后有结果为空,则重新初始化聚类中心。第五步,更新聚类中心,(计算每一簇中所有点的平均值),然后再次进行分
2020-10-29 19:41:26 310
原创 k-means聚类算法
1、聚类 所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集, 要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。其中每个子集叫做一个簇。 与分类不同,分类是有监督学习,要求分类前明确各个类别,并断言每个元素映射到一个类别,而聚类是标记学习,在聚类前可以不知道类别甚至不给定类别数量,是无监督学习的一种。 目前聚类广泛应用于统计学、生物学、数据库技术和市场营...
2020-10-29 19:15:01 4837 1
原创 星座图某些性质
星座图一些性质的分析星座图有几个重要的参数:最小欧几里德距离:它是M-QAM信号星座图上星座点之间的最小距离。该参数反映了M-QAM信号抗高斯白噪声的能力(最小欧几里德距离越大,信号抗高斯白噪声的能力越强),可以通过优化星座图的分布来获得最大值。 最小相位偏移:最小相位偏移是M-QAM信号星座点相位的最小偏移,该参数反映了MQAM信号抗相对抖动能力和对时钟恢复精确度的敏感性,同样地,可以通过优化星座点的分布来获得最大值,以获得更优的传输性能。我们来看看16QAM的两种星座图:通过刚刚的分
2020-10-29 16:23:26 7611
原创 星座图再学习
BPSK 二相相移键控先来了解一下BPSK(Binary Phase Shift Keying,二相相移键控)二.PSK(相移键控)和IQ调制的关系:PSK:相移键控方法是通过改变载波信号的相位值来表示数字信号 1,0的。当然,在实际信号的传输过程中,经常会把二进制信号按照M个比特作为一组传输,这就是MPSK。(PSK调制幅度不变,改变相位)比如说:如果我们把2个比特作为一组,那么每一组二进制信号就会有00,01,10,11四种组合方式,那么我们就需要s(t)用4种...
2020-10-29 16:08:19 4945 1
转载 星座图
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/weixin_44586473/article/details/104066625
2020-10-28 21:14:28 229
原创 正交频分复用再学习
我们知道,如果信道带宽,小于相干带宽,那么就可以认为信号的传输过程是没有频率选择性衰落的,也就是能有效抵抗多径衰落,可是信号带宽小,又意味着传输速率低,为了既能高速传输数据,又能有效避免多径衰落,人们很自然的想到,可以将高速数据,分成低速多路数据,再经过多路载波发送,到接收端再将这多路低速的数据合成一路高速数据:这就是频分复用的概念。如果这些载波是相互正交的话,就称为正交的频分复用。根据前面正交的定义,如果要求载波之间相互正交,那么必须满足它们之间的积分为零。可以验证,这样的一组载波
2020-10-28 20:33:04 935 1
原创 正交频分复用中的正交问题
OFDM即正交频分复用;正交从向量的角度看,即两个向量成直角:那向量的正交意味着什么呢?正交的向量意味着两向量之间是互不相关的,其中任意一个向量无论怎么变化,它在另一个向量上的投影始终是一个点,而如果它们不是正交,而是有一定的倾斜,那么一个向量的变化,其在另一个向量上的投影就会不断变化。换句话说,就是两向量之间有关联。上面是一种正交的定义,关于正交的定义还有如下一种:在n维空间中,如果两向量之间的內积为零,则称两向量之间是正交的。在三维空间中,任何一个向量在三个维度上
2020-10-28 20:16:58 2003
原创 正交频分复用
章节一:时域上的OFDM OFDM的"O"代表着"正交",那么就先说说正交吧。首先说说最简单的情况,sin(t)和sin(2t)是正交的【证明:sin(t)·sin(2t)在区间[0,2π]上的积分为0】,而正弦函数又是波的最直观描述,因此我们就以此作为介入点。在下面的图示中,在[0,2π]的时长内,采用最易懂的幅度调制方式传送信号:sin(t)传送信号a,因此发送a·sin(t),sin(2t)传送信号b,因此发送b·sin(2t)。其中,sin(t)和sin(2t)的用处是用来承载信号,是
2020-10-28 20:07:50 2823
原创 BP神经网络算法的流程
已经知道在BP神经网络模型中,我们有三层结构,输入层、隐藏层、输出层,因此输入层到隐藏层的权值,设为v i h v_{ih}vih,隐藏层第h个神经元的阈值我们设为γh 。隐藏层到输出层的权值,设为whj ,输出层第j个神经元的阈值我们用θj表示。在下面这张图里,有d输入神经元,q个隐藏神经元,隐藏有q个隐藏神经元阈值,L个输出神经元,因此有L个输出神经元阈值。...
2020-10-27 16:38:17 5078
原创 BP神经网络基本概念
BP神经网络基本概念: BP神经网络,它模拟了人脑的神经网络的结构,而人大脑传递信息的基本单位是神经元,人脑中有大量的神经元,每个神经元与多个神经元相连接。BP神经网络,类似于上述,是一种简化的生物模型。每层神经网络都是由神经元构成的,单独的每个神经元相当于一个感知器。 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。 大家记住,反复的念这句话:反向传播,反向传播,反向传播。那么反向传播的东西是什么呢?答案是...
2020-10-27 16:24:55 4761
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人