Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式 的操作系统平台,而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序。
Yarn 基础架构:
YARN 主要由 ResourceManager、NodeManager、ApplicationMaster 和 Container 等组件 构成
1)ResourceManager(RM)主要作用如下:
(1)处理客户端请求
(2)监控NodeManager
(3)启动或监控ApplicationMaster
(4)资源的分配与调度
2)NodeManager(NM)主要作用如下:
(1)管理单个节点上的资源
(2)处理来自ResourceManager的命令
(3)处理来自ApplicationMaster的命令
3)ApplicationMaster(AM)作用如下:
(1)为应用程序申请资源并分 配给内部的任务
(2)任务的监控与容错
4)Container
Container是 YARN中的资源 抽象,它封装了某个节点上的多 维度资源,如内存、CPU、磁 盘、 网络等。
Yarn 工作机制:
(1)MR 程序提交到客户端所在的节点。
(2)YarnRunner 向 ResourceManager 申请一个 Application。
(3)RM 将该应用程序的资源路径返回给 YarnRunner。
(4)该程序将运行所需资源提交到 HDFS 上。
(5)程序资源提交完毕后,申请运行 mrAppMaster。
(6)RM 将用户的请求初始化成一个 Task。
(7)其中一个 NodeManager 领取到 Task 任务。
(8)该 NodeManager 创建容器 Container,并产生 MRAppmaster
(9)Container 从 HDFS 上拷贝资源到本地。
(10)MRAppmaster 向 RM 申请运行 MapTask 资源。
(11)RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分 别领取任务并创建容器。
(12)MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager 分别启动 MapTask,MapTask 对数据分区排序。
(13)MrAppMaster 等待所有 MapTask 运行完毕后,向 RM 申请容器,运行 ReduceTask。
(14)ReduceTask 向 MapTask 获取相应分区的数据。
(15)程序运行完毕后,MR 会向 RM 申请注销自己。
作业提交过程:
(1)作业提交
第 1 步:Client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业。
第 2 步:Client 向 RM 申请一个作业 id。
第 3 步:RM 给 Client 返回该 job 资源的提交路径和作业 id。
第 4 步:Client 提交 jar 包、切片信息和配置文件到指定的资源提交路径。
第 5 步:Client 提交完资源后,向 RM 申请运行 MrAppMaster。
(2)作业初始化
第 6 步:当 RM 收到 Client 的请求后,将该 job 添加到容量调度器中。
第 7 步:某一个空闲的 NM 领取到该 Job。
第 8 步:该 NM 创建 Container,并产生 MRAppmaster。
第 9 步:下载 Client 提交的资源到本地。
(3)任务分配
第 10 步:MrAppMaster 向 RM 申请运行多个 MapTask 任务资源。
第 11 步:RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分别领取任务并创建容器。
(4)任务运行
第 12 步:MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager 分别启动 MapTask,MapTask 对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第 14 步:ReduceTask 向 MapTask 获取相应分区的数据。
第 15 步:程序运行完毕后,MR 会向 RM 申请注销自己。
(5)进度和状态更新
YARN 中的任务将其进度和状态(包括 counter)返回给应用管理器, 客户端每秒(通过 mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新, 展示给用户。
(6)作业完成
除了向应用管理器请求作业进度外, 客户端每 5 秒都会通过调用 waitForCompletion()来 检查作业是否完成。时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业 完成之后, 应用管理器和 Container 会清理工作状态。作业的信息会被作业历史服务器存储 以备之后用户核查。
Yarn 调度器和调度算法
目前,Hadoop 作业调度器主要有三种:FIFO、容量(Capacity Scheduler)和公平(Fair Scheduler)。
Apache Hadoop3.1.3 默认的资源调度器是 Capacity Scheduler。 CDH 框架默认调度器是 Fair Scheduler。
先进先出调度器(FIFO)
FIFO 调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。
优点:简单易懂; 缺点:不支持多队列,生产环境很少使用;
容量调度器(Capacity Scheduler)
1、多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略。
2、容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
3、灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用 程序提交,则其他队列借调的资源会归还给该队列。
4、多租户: 支持多用户共享集群和多应用程序同时运行。 为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。
容量调度器资源分配算法:
1)队列资源分配 从root开始,使用深度优先算法,优先 选择资源占用率最低的队列分配资源。
2)作业资源分配 默认按照提交作业的优先级和提交时间 顺序分配资源。
3)容器资源分配 按照容器的优先级分配资源; 如果优先级相同,按照数据本地性原则:
(1)任务和数据在同一节点
(2)任务和数据在同一机架
(3)任务和数据不在同一节点也不在同一机架
公平调度器(Fair Scheduler)
1)与容量调度器相同点
(1)多队列:支持多队列多作业
(2)容量保证:管理员可为每个队列设置资源最低保证和资源使用上线
(3)灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提 交,则其他队列借调的资源会归还给该队列
(4)多租户:支持多用户共享集群和多应用程序同时运行;为了防止同一个用户的作业独占队列中的资源,该调度器 会对同一用户提交的作业所占资源量进行限定。
2)与容量调度器不同点
(1)核心调度策略不同
容量调度器:优先选择资源利用率低的队列
公平调度器:优先选择对资源的缺额比例大的
(2)每个队列可以单独设置资源分配方式
容量调度器:FIFO、 DRF
公平调度器:FIFO、FAIR、DR
公平调度器设计目标是:在时间尺度上,所有作业获得公平的资源。某一 时刻一个作业应获资源和实际获取资源的差距叫“缺额”
调度器会优先为缺额大的作业分配资源
公平调度器队列资源分配方式:
1)FIFO策略
公平调度器每个队列资源分配策略如果选择FIFO的话,此时公平调度器相当于上面讲过的容量调度器。
2)Fair策略
Fair 策略(默认)是一种基于最大最小公平算法实现的资源多路复用方式,默认情况下,每个队列内部采用该方式分配资 源。这意味着,如果一个队列中有两个应用程序同时运行,则每个应用程序可得到1/2的资源;如果三个应用程序同时运行,则 每个应用程序可得到1/3的资源
具体资源分配流程和容量调度器一致
(1)选择队列
(2)选择作业
(3)选择容器
以上三步,每一步都是按照公平策略分配资源
➢ 实际最小资源份额:mindshare = Min(资源需求量,配置的最小资源)
➢ 是否饥饿:isNeedy = 资源使用量 < mindshare(实际最小资源份额)
➢ 资源分配比:minShareRatio = 资源使用量 / Max(mindshare, 1)
➢ 资源使用权重比:useToWeightRatio = 资源使用量 / 权重
DRF策略
DRF(Dominant Resource Fairness),我们之前说的资源,都是单一标准,例如只考虑内存(也是Yarn默 认的情况)。但是很多时候我们资源有很多种,例如内存,CPU,网络带宽等,这样我们很难衡量两个应用 应该分配的资源比例。
那么在YARN中,我们用DRF来决定如何调度:
假设集群一共有100 CPU和10T 内存,而应用A需要(2 CPU, 300GB),应用B需要(6 CPU,100GB)。 则两个应用分别需要A(2%CPU, 3%内存)和B(6%CPU, 1%内存)的资源,这就意味着A是内存主导的, B是 CPU主导的,针对这种情况,我们可以选择DRF策略对不同应用进行不同资源(CPU和内存)的一个不同比 例的限制。