05 | 得心应手应对 OOM 的疑难杂症


得心应手应对 OOM 的疑难杂症

疑问:JVM 是如何判断哪些对象应该被回收?哪些应该被保持呢?

在古代,刑罚中有诛九族一说。指的是有些人犯大事时,皇上杀一人不足以平复内心的愤怒时,会对亲朋好友产生连带责任。诛九族时首先需要追溯到一个共同的祖先,再往下细数连坐。堆上的垃圾回收也有同样的思路。

JVM 的 GC 动作,是不受程序控制的,它会在满足条件的时候,自动触发。

在发生 GC 的时候,一个对象,JVM 总能够找到引用它的祖先。找到最后,如果发现这个祖先已经名存实亡了,它们都会被清理掉。而能够躲过垃圾回收的那些祖先,它们的名字就叫作 GC Roots

从 GC Roots 向下追溯、搜索,会产生一个叫作 Reference Chain 的链条。当一个对象不能和任何一个 GC Root 产生关系时,就会被无情的诛杀掉。

如图所示,Obj5、Obj6、Obj7,由于不能和 GC Root 产生关联,发生 GC 时,就会被回收。

在这里插入图片描述

垃圾回收就是围绕着 GC Roots 去做的。同时,它也是很多内存泄露的根源,因为其他引用根本没有这样的权利。

疑问:什么样的对象,才会是 GC Root 呢?

这不在于它是什么样的对象,而在于它所处的位置。

GC Roots 有哪些

GC Roots 是一组必须活跃的引用。 用通俗的话来说,就是程序通过直接引用或者间接引用,能够访问到的潜在被使用的对象。

GC Roots 包括:

  • Java 线程中,当前所有正在被调用的方法的引用类型参数、局部变量、临时值等。也就是与我们栈帧相关的各种引用。
  • 所有当前被加载的 Java 类。
  • Java 类的引用类型静态变量。
  • 运行时常量池里的引用类型常量(String 或 Class 类型)。
  • JVM 内部数据结构的一些引用,比如 sun.jvm.hotspot.memory.Universe 类。
  • 用于同步的监控对象,比如调用了对象的 wait() 方法。
  • JNI handles,包括 global handles 和 local handles。

GC Roots 大体可以分为三大类:

  • 活动线程相关的各种引用。
  • 类的静态变量的引用。
  • JNI 引用。

注意点:

  • 这里说的是活跃的引用,而不是对象,对象是不能作为 GC Roots 的。
  • GC 过程是找出所有活对象,并把其余空间认定为“无用”,并回收它们占用的空间;而不是找出所有死掉的对象,并回收它们占用的空间。所以,哪怕 JVM 的堆非常的大,基于 tracing 的 GC 方式,回收速度也会非常快。

引用级别

面试题:能够找到 Reference Chain 的对象,就一定会存活么?

对象对于另外一个对象的引用,要看关系牢靠不牢靠,可能在链条的其中一环,就断掉了。

在这里插入图片描述

根据发生 GC 时,这条链条的表现,可以对这个引用关系进行更加细致的划分。它们的关系,可以分为强引用、软引用、弱引用、虚引用等。

强引用 Strong references

当内存空间不足,系统撑不住了,JVM 就会抛出 OutOfMemoryError 错误。即使程序会异常终止,这种对象也不会被回收。 这种引用属于最普通最强硬的一种存在,只有在和 GC Roots 断绝关系时,才会被消灭掉。

这种引用,你每天的编码都在用。例如:new 一个普通的对象。

Object obj = new Object()

这种方式可能是有问题的。假如你的系统被大量用户(User)访问,你需要记录这个 User 访问的时间。可惜的是,User 对象里并没有这个字段,所以我们决定将这些信息额外开辟一个空间进行存放。

static Map<User,Long> userVisitMap = new HashMap<>();

...

userVisitMap.put(user, time);

当你用完了 User 对象,其实你是期望它被回收掉的。但是,由于它被 userVisitMap 引用,我们没有其他手段 remove 掉它。这个时候,就发生了内存泄漏(memory leak)。

这种情况还通常发生在一个没有设定上限的 Cache 系统,由于设置了不正确的引用方式,加上不正确的容量,很容易造成 OOM。

软引用 Soft references

软引用用于维护一些可有可无的对象。在内存足够的时候,软引用对象不会被回收,只有在内存不足时,系统则会回收软引用对象,如果回收了软引用对象之后仍然没有足够的内存,才会抛出内存溢出异常。

可以看到,这种特性非常适合用在缓存技术上。比如网页缓存、图片缓存等。

Guava 的 CacheBuilder,就提供了软引用和弱引用的设置方式。在这种场景中,软引用比强引用安全的多。

软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,Java 虚拟机就会把这个软引用加入到与之关联的引用队列中。

弱引用 Weak references

弱引用对象相比较软引用,要更加无用一些,它拥有更短的生命周期。

当 JVM 进行垃圾回收时,无论内存是否充足,都会回收被弱引用关联的对象。 弱引用拥有更短的生命周期,在 Java 中,用 java.lang.ref.WeakReference 类来表示。

虚引用 Phantom References

这是一种形同虚设的引用,在现实场景中用的不是很多。虚引用必须和引用队列(ReferenceQueue)联合使用。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。

虚引用主要用来跟踪对象被垃圾回收的活动。 当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象之前,把这个虚引用加入到与之关联的引用队列中。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

用于监控 GC 发生的例子

private static void startMonitoring(ReferenceQueue<MyObject> referenceQueue, Reference<MyObject> ref) {

     ExecutorService ex = Executors.newSingleThreadExecutor();

     ex.execute(() -> {

         while (referenceQueue.poll()!=ref) {

             //don't hang forever

             if(finishFlag){

                 break;

            }

        }

         System.out.println("-- ref gc'ed --");

    });

     ex.shutdown();

}

基于虚引用,有一个更加优雅的实现方式,那就是 Java 9 以后新加入的 Cleaner,用来替代 Object 类的 finalizer 方法。

典型 OOM 场景

OOM 的全称是 Out Of Memory。除了程序计数器,其他区域都有 OOM 的可能。但是最常见的还是发生在堆上。

在这里插入图片描述

OOM 到底是什么引起的呢?有几个原因:

  • 内存的容量太小了,需要扩容,或者需要调整堆的空间。
  • 错误的引用方式,发生了内存泄漏,没有及时的切断与 GC Roots 的关系。 比如线程池里的线程,在复用的情况下忘记清理 ThreadLocal 的内容。
  • 接口没有进行范围校验,外部传参超出范围。 比如数据库查询时的每页条数等。
  • 对堆外内存无限制的使用。 这种情况一旦发生更加严重,会造成操作系统内存耗尽。

典型的内存泄漏场景,原因在于对象没有及时的释放自己的引用。比如一个局部变量,被外部的静态集合引用。

在这里插入图片描述

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
您好!如果您想了解关于 PostgreSQL 的OOM(Out-of-Memory)问题,我可以为您提供一些帮助。OOM问题通常指的是在 PostgreSQL 数据库运行过程中,由于内存不足导致的异常终止或崩溃。 要解决OOM问题,可以尝试以下几个方法: 1. 检查系统内存:确保系统具有足够的可用内存来支持 PostgreSQL 运行。如果您的系统内存不足,您可能需要增加物理内存或调整其他应用程序的内存使用情况。 2. 调整 PostgreSQL 配置:您可以调整 PostgreSQL 的配置文件(postgresql.conf)中的参数来优化内存使用。特别是,可以通过调整 shared_buffers、work_mem 和 maintenance_work_mem 参数来控制内存分配。 3. 监视和优化查询:OOM问题有时是由于某些查询消耗了过多的内存资源导致的。通过监视查询的执行计划和资源使用情况,可以识别和优化这些查询,以减少内存消耗。 4. 定期清理和优化数据库:定期执行 VACUUM 和 ANALYZE 操作可以清理无用数据并更新统计信息,从而减少数据库的内存占用。 5. 升级 PostgreSQL 版本:较新的 PostgreSQL 版本通常具有更好的内存管理和性能优化。考虑升级到最新的稳定版本,以获得更好的OOM问题处理能力。 请注意,解决OOM问题可能需要综合考虑数据库设计、硬件资源和系统配置等多个因素。如果您遇到具体的问题或错误信息,请提供更多详细信息,以便我可以给出更准确的建议。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

久违の欢喜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值