[笔记]牛顿方法·指数族·GLMs

牛顿方法(Newton’s method)

牛顿方法是另一种最大化 l ( θ ) l(θ) l(θ)的算法。
首先找到一个实数域上的方程 f f f f ( θ ) = 0 f(θ)=0 f(θ)=0,θ是实数。
牛顿方法图示
从起始点 θ 0 θ_0 θ0开始,找到 f ( θ 0 ) f(θ_0) f(θ0)处的切线,与坐标轴相交于 θ 1 θ_1 θ1,由此不断迭代。两点之间的距离记为Δ 。
$f’(θ_0)=\frac{f(θ_0)}{Δ} $ ----> $Δ=\frac{f(θ_0)}{f’(θ_0)} $
所以牛顿方法执行更新规则: θ : = θ − f ( θ ) f ′ ( θ ) θ:=θ-\frac{f(θ)}{f'(θ)} θ:=θf(θ)f(θ)
如果想要找到θ使得 l ( θ ) l(θ) l(θ)最大,那么θ就该满足 l ′ ( θ ) = 0 l'(θ)=0 l(θ)=0,由此可见我们可以将牛顿方法运用其中, f ( θ ) = l ′ ( θ ) f(θ)=l'(θ) f(θ)=l(θ)
θ : = θ − l ′ ( θ ) l ′ ′ ( θ ) θ:=θ-\frac{l'(θ)}{l''(θ)} θ:=θl(θ)l(θ)
在一般化的牛顿方法中,θ通常一个向量,所以一般化的牛顿方法(也称作Newton-Raphson method) 为:
θ : = θ − H − 1 ▽ θ l ( θ ) θ:=θ-H^{-1}▽_θl(θ) θ:=θH1θl(θ)
其中, ▽ θ l ( θ ) ▽_θl(θ) θl(θ)表示 l ( θ ) l(θ) l(θ) θ i ′ s θ_i's θis的偏导数;
H表示黑塞矩阵(Hessian matrix),是二阶导数矩阵。
H i j = ∂ 2 l ( θ ) ∂ θ i ∂ θ j H_{ij}=\frac{\partial^2l(θ)}{\partialθ_i\partialθ_j} Hij=θiθj2l(θ)
由此可见,该式也是一阶导数除以二阶导数。
总得来说,牛顿方法比梯度上升算法减少了迭代次数,但是其缺点是每次迭代都要重新计算H矩阵的逆,如果在大规模数据中涉及很多特征,那么这将花费巨大代价。


指数分布族(Exponential family distributions)

指数族:
p ( y ; η ) = b ( y ) e x p ( η T T ( y ) − a ( η ) ) p(y; η)=b(y)exp( η^TT(y)-a(η)) p(y;η)=b(y)exp(ηTT(y)a(η))
其中,
η被称作自然参数或正则参数(natural parameter/canonical parameter);
T ( y ) T(y) T(y)被称作充分统计量(sufficient statistic),通常 T ( y ) = y T(y)=y T(y)=y
a ( y ) a(y) a(y)log partition function e − a ( η ) e^{-a(η)} ea(η)是一个规范化常数,使得分布 p ( y ; η ) p(y;η) p(y;η)的和为1。
对于给定的一组a,b,T,都会得到对应的指数分布族,而且改变参数η的取值会影响该指数族的分布。

伯努利分布(Bernoulli)的指数分布族

Bernoulli
本例中η为标量,所以 η = l o g ( φ / ( 1 − φ ) ) η=log(φ/(1- φ)) η=log(φ/(1φ)),即 φ = 1 / ( 1 + e − η ) φ=1/(1+e^{-η}) φ=1/(1+eη)
这样我们就得到了一个logistic函数,也说明了伯努利分布的参数φ与自然参数η存在特定的关系。
指数分布族:
B指数族

高斯分布(Gaussian)的指数分布族

在学习线性回归时,发现高斯分布的方差对最终结果并没有任何影响。所以为了简化问题,令 σ 2 = 1 σ^2=1 σ2=1
Gaussian
指数分布族:
G指数族
以下分布也都可以写成指数分布族的形式:
多项式分布(multinomial)
泊松分布(poisson):用于计数的建模。
伽马分布(gamma),指数分布(exponential):用于对正数建模,多用于间隔问题。
β分布,Dirichlet分布:用于对小数建模。


GLMs

广义线性模型(Generalized Linear Models)
构造GLMs来解决问题,我们首先需要了解三个设计假设。

  1. y ∣ x ; θ ∼ E x p o n e n t i a l F a m i l y ( η ) y|x; θ ∼ ExponentialFamily(η) yx;θExponentialFamily(η)
  2. 我们的目标是通过给定x,来预测T(y)期望( E [ T ( y ) ∣ x ] E[T(y)|x] E[T(y)x])。由于通常T(y)=y,因此假设函数需要满足 h ( x ) = E [ y ∣ x ] h(x)=E[y|x] h(x)=E[yx](这个假设对logistic回归和线性回归都成立)。
  3. 自然函数η与输入特征x的关系是线性的, η = θ T x η=θ^Tx η=θTx(如果自然参数是向量, η i = θ i T x η_i=θ_{i}^Tx ηi=θiTx)。

如果我们的问题需要满足这三个假设,那么我们就可以通过构造广义线性模型来解决。

最小二乘法

在线性回归的最小平方问题中,目标变量y(在GLM的术语中也称作响应变量(response variable))是连续的,给定x,y的条件分布符合高斯分布,均值为μ。套用前面GLM的推导,我们有μ=η。所以,我们可以得到线性回归的假设函数就是:
OLS指数族

Logistic回归

在二元分类问题中,给定x,y服从伯努利分布,均值为ϕ。同样利用前面的推导,可以得到logistic回归的假设函数就是:
Logistic指数族
再介绍一些有关知识:
正则响应函数(canonical response function): g ( η ) = E [ T ( y ) ; η ] g(η)=E[T(y);η] g(η)=E[T(y);η]
正则关联函数(canonical link function): g − 1 g^{-1} g1

Softmax回归

多项式分布,多类别分类问题。
假设 y ∈ { 1 , 2 , . . . , k } y \in \{1,2,...,k\} y{1,2,...,k},可以用一个k维的向量来表示分类结果,当y=i时,向量的第i个元素为1,其它均为0。这样表示是存在冗余的,因为如果我们知道了前k-1个元素,那么第k个其实就已经确定了,因此我们可以只用k-1维向量来表示。
设置参数: φ 1 , φ 2 , . . . , φ k − 1 φ_1,φ_2,...,φ_{k-1} φ1,φ2,...,φk1 φ i = p ( y = i ; φ ) φ_i=p(y=i;φ) φi=p(y=i;φ)
由此可见: φ k = 1 − ∑ i = 1 k − 1 φ i φ_k=1-\sum_{i=1}^{k-1}φ_i φk=1i=1k1φi
k维向量
注意,这里就和前面的T(y)=y不同了,这里的T(y)是一个向量,所以用 T ( y ) i T(y)_i T(y)i表示T(y)的第i个元素。在往后的推导过程中,会出现***1{True}=1,1{False}=0***的判别函数。所以T(y)与y的关系可以写成:
T ( y ) i = 1 { y = i } T(y)_i=1\{y=i\} T(y)i=1{y=i}
E [ T ( y ) i ] = P ( y = i ) = φ i E[T(y)_i]=P(y=i)=φ_i E[T(y)i]=P(y=i)=φi
多项式分布的指数分布族:
指数族推导过程
可以得到:
多项式分布指数族

链接函数为 η i = l o g φ i φ k η_i=log\frac{φ_i}{φ_k} ηi=logφkφi,为了简化,令 η k = 0 η_k=0 ηk=0,可得响应函数:
响应函数
这个从η到φ’s的映射被称作softmax函数
根据假设3,并且令 θ k = 0 θ_k=0 θk=0 η k = θ k T x = 0 η_k=θ_{k}^Tx=0 ηk=θkTx=0,得到softmax回归模型,它是logistic回归的推广。
softmax回归
所以我们假设函数的输出为:
output推导过程
最后就是回归问题的参数的学习了,依然可以使用极大似然估计的方法来学习θ,似然函数为:
softmax似然函数
之后就可以通过梯度上升或牛顿方法来求出合适的参数θ。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值