一、背景
统计量的引入是为了简化样本的繁杂,但所使用的统计量是否把样本中关于感兴趣问题的信息全部吸收进来了?这就引出充分统计量的概念。它是Fisher正式提出的,其思想源于他和Eddington关于估计标准差的争论。
二、定义
对于某分布族F={Fθ(x):θ∈Θ}\mathcal F=\{F_\theta(x):\theta\in\Theta\}F={Fθ(x):θ∈Θ},∀F∈F\forall F\in\mathcal F∀F∈F,设X1,⋯ ,XnX_1, \cdots, X_nX1,⋯,Xn是来自FFF的样本,T=T(X1,⋯ ,Xn)T=T(X_1, \cdots, X_n)T=T(X1,⋯,Xn)是一统计量,如在给定T=tT=tT=t下,样本(X1,⋯ ,Xn)(X_1, \cdots, X_n)(X1,⋯,Xn)的条件概率分布与总体分布FFF或参数θ\thetaθ无关,则称统计量TTT是此分布族F\mathcal FF的充分统计量,也称统计量TTT是参数θ\thetaθ的充分统计量。
- 对于连续型随机变量,其概率分布为概率密度函数;对于离散型随机变量,其概率分布为累积分布函数
- 充分统计量TTT可以是向量,但不一定与参数的维度相同
- 如果统计量TTT是参数θ\thetaθ的充分统计量,且S(t)S(t)S(t)是单值可逆的,则S(T)S(T)S(T)也是θ\thetaθ的充分统计量
三、因子分解定理
对于分布族F={Fθ(x):θ∈Θ}\mathcal F=\{F_\theta(x):\theta\in\Theta\}F={Fθ(x):θ∈Θ},设X1,⋯ ,XnX_1, \cdots, X_nX1,⋯,Xn是一组IID样本,TTT是一统计量,则TTT的θ\thetaθ的充分统计量的充要条件是:其样本分布fθ(x1,⋯ ,xn)f_\theta(x_1, \cdots, x_n)fθ(x1,⋯,xn)可做如下分解:fθ(x1,⋯ ,xn)=gθ(T(x1,⋯ ,xn))⋅h(x1,⋯ ,xn)f_\theta(x_1, \cdots, x_n)=g_\theta(T(x_1, \cdots, x_n))\cdot h(x_1, \cdots, x_n)fθ(x1,⋯,xn)=gθ(T(x1,⋯,xn))⋅h(x1,⋯,xn)
其中,h(x)h(\bm x)h(x)不依赖于参数θ\thetaθ
证明:
给出离散情况下的证明:
此时fθ(x1,⋯ ,xn)=P{X1=x1,⋯ ,Xn=xn}f_\theta(x_1, \cdots, x_n)=P\{X_1=x_1, \cdots,X_n=x_n\}fθ(x1,⋯,xn)=P{X1=x1,⋯,Xn=xn},对于给定的ttt,定义A(t)={(x1,⋯ ,xn):T(x1,⋯ ,xn)=t}A(t)=\{(x_1, \cdots, x_n): T(x_1, \cdots, x_n)=t\}A(t)={(x1,⋯,xn):T(x1,⋯,xn)=t}⋅\cdot⋅ 充分性:对于给定当前样本值x\bm xx,当x∉A(t)\bm x\notin A(t)x∈/A(t)时,P{X=x∣T=t}=0P\{ \bm X=\bm x|T=t\}=0P{X=x∣T=t}=0与参数θ\thetaθ无关;当x∈A(t)\bm x\in A(t)x∈A(t)时,有P{X=x∣T=t}=P{X=x,T=t}Pθ{T=t}=P{X=x}Pθ{T=t}=gθ(t)h(x)∑y∈A(t)gθ(t)h(y)=h(x)∑y∈A(t)h(y)P\{ \bm X=\bm x|T=t\}=\frac{P\{ \bm X=\bm x, T=t\}}{P_\theta\{T=t\}}=\frac{P\{ \bm X=\bm x\}}{P_\theta\{T=t\}}=\frac{g_\theta(t)h(x)}{\sum\limits_{\bm y\in A(t)}g_\theta(t)h(\bm y)}=\frac{h(x)}{\sum\limits_{\bm y\in A(t)}h(\bm y)}P{X=x∣T=t}=Pθ{T=t}P{X=x,T=t}=Pθ{T=t}P{X=x}=y∈A(t)∑gθ(t)h(y)gθ(t)h(x)=y∈A(t)∑h(y)h(x),与参数θ\thetaθ无关
⋅\cdot⋅ 必要性:设TTT是充分统计量,由定义可知P{X=x∣T=t}P\{ \bm X=\bm x|T=t\}P{X=x∣T=t}与参数θ\thetaθ无关,则它只能是x\bm xx的函数,我们记之为h(x)h(\bm x)h(x),对于给定的ttt和x∈A(t)\bm x\in A(t)x∈A(t),我们有Pθ{X=x}=P{X=x∣T=t}Pθ{T(x)=t}=gθ(t)h(x)P_\theta\{\bm X=\bm x\}=P\{ \bm X=\bm x|T=t\}P_\theta\{T(\bm x)=t\}=g_\theta(t)h(\bm x)Pθ{X=x}=P{X=x∣T=t}Pθ{T(x)=t}=gθ(t)h(x)
四、例子
- 均匀分布U(0,θ)U(0,\theta)U(0,θ)的充分统计量:T=max{X1,⋯ ,Xn}=X(n)T=\max\{X_1,\cdots,X_n\}=X_{(n)}T=max{X1,⋯,Xn}=X(n)
- 正态分布N(μ,σ2)N(\mu, \sigma^2)N(μ,σ2)的充分统计量:T=(X‾,∑i=1n(Xi−X‾)2)T=(\overline X, \sum_{i=1}^n(X_i-\overline X)^2)T=(X,i=1∑n(Xi−X)2)
- 伯努利分布b(1,p)b(1, p)b(1,p)的充分统计量:T1=(X1,⋯ ,Xn)T_1=(X_1, \cdots, X_n)T1=(X1,⋯,Xn)T2=(X1+X2,⋯ ,Xn)T_2=(X_1+X_2, \cdots, X_n)T2=(X1+X2,⋯,Xn)⋯⋯⋯\cdots\cdots\cdots⋯⋯⋯Tn=X1+⋯+XnT_n=X_1+\cdots+X_nTn=X1+⋯+Xn
- 柏松分布P(λ)P(\lambda)P(λ)的充分统计量:T=∑i=1nXiT=\sum_{i=1}^nX_iT=i=1∑nXi