【概率论与数理统计】期末不挂科复习笔记
只能说最好先看看老师的ppt,在看看猴博士就全懂了~
第一章(条件概率、全概率、贝叶斯公式)
1、无放回类题目
无放回,直接用C解
2、有放回类题目
有放回,使用(n1+n2)!/n1!*n2!然后乘上每种的概率
3、需要画图的题目
4、条件概率
A发生的前提下,B发生的概率
5、全概率公式
所有概率的总和
6、贝叶斯公式
贝叶斯其实是条件概率反过来求。其实就是已知结果求原因
可能和全概率公式结合考点,通过上一篇的P(有客车发生故障)= 0.0084来计算贝叶斯这一问。
第二章(分布函数与概率密度)
1、已知Fx(X)与fx(X)中的一项,求另一项
Fx是分布函数,fx是概率密度
小fx是大Fx求导出来的,同理可以通过小fx求积分来算大Fx
Fx求导得到fx
fx求积分得到Fx
2、已知Fx(X)与fx(X)中的一种,求P
已知分布函数Fx,求概率
已知概率密度fx,求概率
注意:P(a<X<b)和P(a<=X<=b)是等价的,这个等号不影响
3、Fx(X)或fx(X)含未知数,求未知数
记住Fx(-∞) = 0 Fx(+∞) = 1,概率密度fx(X)在-∞和+∞上的积分为1
Fx分布函数例题:
fx概率密度例题:
4、求分布律
高中题目了属于是,只能说dddd
第三章(分布函数与概率密度2)
1、已知X分布列,求Y分布列
替换算就完事了
2、已知Fx(X)了,求Fy(Y)
也是带入替换
- 把X换成什么什么Y
- 替换Fx(X)中的x结果为Fx(?Y)
- 判断y中是否有负号
如果是带有负号,那么就这样:
3、已知fx(X),求fy(Y)
同样的套路
- 写出x等于什么什么y
- 用什么y替换fx(X)中的x,结果为fx(?y)
- 令fy = (?y)’ * fx(?y)
- 判断?y中是否有负号,如果有就是求得的答案的相反数
第四章(六大分布)
首先给出各种分布的分布律、概率密度、E(x)、D(x)
1、符合均匀分布,求概率
2、符合泊松分布,求概率
lambda是参数,x是某某次数
如果是这样的,千万不要用1-P(X=6)这种,要一个一个算!