最大流 --- Edmond Karp算法

本文转载于最大流 — Edmond Karp算法因原文部分图片及代码显示问题,阅读不方便,故修正后转载。

Edmond Karp算法的大概思想:

反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。

在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。

而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

(粗体表明需要掌握的概念)

关于反向边:

以下摘至HDOJ的课件和网上的:

首先来看一下基本的网络流最大流模型。

有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点,通常规定为1号点。另一个点也很特殊,只进不出,叫做汇点,通常规定为n号点。每条有向边上有两个量,容量和流量,从i到j的容量通常用c[I,j]表示,流量则通常是f[I,j]。通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有”进入”他们的流量和等于所有从他本身”出去”的流量。

把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。

比如这个图。每条边旁边的数字表示它的容量。
在这里插入图片描述
下面我们来考虑如何求最大流。

首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。一个最简单的例子就是,零流,即所有的流量都是0的流。

我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值 delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。

这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。

我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。

寻找增广路的时候我们可以简单的从源点开始做bfs,并不断修改这条路上的delta量,直到找到源点或者找不到增广路。

这里要先补充一点,在程序实现的时候,我们通常只是用一个c数组来记录容量,而不记录流量,当流量+1的时候,我们可以通过容量-1来实现,以方便程序的实现。

// 用BFS来判断从结点s到t的路径上是否还有delta 
// 即判断s,t之间是否还有增广路径,若有,返回1 bool 
BFS(int s, int t) 
{ 
	queue que; memset(pre, -1, sizeof(pre)); 
	memset(vis, false, sizeof(vis));
	pre[s] = s;
	vis[s] = true;
	que.push(s);

	int p;
	while(!que.empty())
	{
    	p = que.front();
    	que.pop();
    	for(int i=1; i<=M; ++i)
    	{
        	if(r[p][i]>0 && !vis[i])
        	{
            	pre[i] = p;
            	vis[i] = true;
            	if(i == t)  // 存在增广路径
                	return true;
            	que.push(i);
        	}
    	}
	}
	return false;
}

但事实上并没有这么简单,上面所说的增广路还不完整,比如说下面这个网络流模型。
在这里插入图片描述
我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)
在这里插入图片描述
这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下
在这里插入图片描述
这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。
在这里插入图片描述
那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

至此,最大流Edmond-Karp算法介绍完毕。

Edmond Karp算法具体实现(C/C++):

#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
const int msize = 205;


int N, M;   // N--路径数, M--结点数
int r[msize][msize];  //
int pre[msize];  // 记录结点i的前向结点为pre[i]
bool vis[msize]; // 记录结点i是否已访问

// 用BFS来判断从结点s到t的路径上是否还有delta
// 即判断s,t之间是否还有增广路径,若有,返回1
bool BFS(int s, int t)
{
    queue<int> que;
    memset(pre, -1, sizeof(pre));
    memset(vis, false, sizeof(vis));

    pre[s] = s;
    vis[s] = true;
    que.push(s);

    int p;
    while(!que.empty())
    {
        p = que.front();
        que.pop();
        for(int i=1; i<=M; ++i)
        {
            if(r[p][i]>0 && !vis[i])
            {
                pre[i] = p;
                vis[i] = true;
                if(i == t)  // 存在增广路径
                    return true;
                que.push(i);
            }
        }
    }
    return false;
}

int EK(int s, int t)
{
    int maxflow = 0, d;
    while(BFS(s, t))
    {
        d= INT_MAX;
        // 若有增广路径,则找出最小的delta
        for(int i=t; i!=s; i=pre[i])
            d = min(d, r[pre[i]][i]);
        // 这里是反向边,看讲解
        for(int i=t; i!=s; i=pre[i])
        {
            r[pre[i]][i] -= d;
            r[i][pre[i]] += d;
        }
        maxflow += d;
    }
    return maxflow;
}


int main()
{
    while(cin >> N >> M)
    {
        memset(r, 0, sizeof(r));
        int s, e, c;
        for(int i=0; i<N; ++i)
        {
            cin >> s >> e >> c;
            r[s][e] += c;   // 有重边时则加上c
        }

        cout << EK(1, M) << endl;
    }
    return 0;
}

注:以上代码可直接套用HDOJ 1532 ( Drainage Ditches ) 和HDOJ 3549 (Flow Problem)。完毕

Date: 2012.1.19 @ Home By Tanky Woo
以上为原文全部内容。

更新:
模板题:P3376 【模板】网络最大流
再推荐几位讲得很好的大佬的博客,不仅限于EK算法,FF, EK, Dinic, ISAP, HLPP 等都会有所涉猎

洛谷 学委的博客:网络最大流-从入门开始,详细讲到实用易懂的Dinic算法
洛谷 苟富贵,无相忘的博客:P4722 -【模板】最大流 加强版 / 预流推进
洛谷 钱逸凡的博客:究级的最大流算法:ISAP与HLPP

更新(2021.8.4)
根据对以上算法的学习,结合我自己的理解写了四种上面提到的过的最大流算法的代码,代码中会有较详细的注释看懂基本没有什么问题如果你看了上面的那些博客的话 最大流的四种常用算法欢迎来指出我的错误

  • 6
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值