常用精度评价指标(evaluation factors)---持续更新中

本文详细介绍了深度学习和机器学习中的关键精度评价指标,包括精度、准确率、平均像素准确率、召回率/灵敏度、F-Score、F1-Score、特异度以及ROC和AUC等。这些指标用于衡量模型性能,例如在二分类问题中,精度、召回率和F1-Score的重要性。理解这些概念对于优化模型和评估预测效果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遇到什么写什么,有错误可以在评论中指出,非常感谢

  • 现在,本文包括精度、召回率、灵敏度、recall、F-Score、F1-Score和特异度
  • 由于现在还不需要,所以没有给出每个指标的数学含义,后续会有补充

背景

类别英文缩写含义
真阳性TP标签为目标且分为目标
真阴性TN标签为背景且分为背景
假阳性FP标签为背景但被分为目标
假阴性FN标签为目标但被分为背景

其中,T表示True,F表示False,P表示Positive,N表示Negative
有一个非常好记的方法,就是T表示分类正确,F表示分类错误,P表示被分为目标,N表示被分为背景,这样组合一下就OK

精度–precision

精 度 = T P T P + F P 精度= \frac{TP}{TP+FP} =TP+FPTP

准确率–accuracy

准 确 率 = T P + T N T P + T N + F P + F N 准确率 = \frac{TP+TN}{TP+TN+FP+FN} =TP+TN+FP+FNTP+TN

平均像素准确率–mean pixel accuracy

M P A = 1 2 ( T P T P + F N + T N T N + F P ) MPA = \frac{1}{2}(\frac{TP}{TP+FN}+\frac{TN}{TN+FP}) MPA=21(TP+FNTP+TN+FPTN)

召回率/灵敏度–recall/Sensitivity

召回率有时也叫做敏感度–Sensitivity,或者真阳性率
召 回 率 = T P T P + F N 召回率 = \frac{TP}{TP+FN} =TP+FNTP

F-Score & F1-Score

F − S c o r e = p r e c i s i o n ∗ r e c a l l β ∗ p r e c i s i o n + r e c a l l ∗ ( 1 + β 2 ) F-Score = \frac{precision*recall}{β*precision+recall}*{(1+β^2)} FScore=βprecision+recallprecisionrecall(1+β2)
其中,β为权重因子,当β为1时,F-Score就成了F1-Score。
F1-score也称为dice coefficient。
F1-score的值域范围是[0,1]。

特异度–specificity

特 异 度 = T N T N + F P 特异度 = \frac{TN}{TN+FP} =TN+FPTN

ROC–接收者操作特征(receiver operating characteristic)

在这里插入图片描述
ROC 曲线是以FP rate 为横坐标,TP rate为纵坐标绘制的曲线。ROC曲线越靠近左上角表示模型中FP小而TP大,模型表现好

VUC–曲线下面积(area under curve)

VUC就是ROC曲线下的面积,面积越大,模型performance越好。

交并比–IoU

交并比顾名思义,就是model给出的bounding box 和 ground truth 中的bounding box的交叠比例。一般认为,IOU大于0.5即可判定识别正确。
I O U = d e t e c t i o n   r e s u l t ∩ g r o u n d   t r u t h d e t e c t i o n   r e s u l t ∪ g r o u n d   t r u t h IOU=\frac{detection \ result \cap ground\ truth}{detection\ result \cup ground\ truth} IOU=detection resultground truthdetection resultground truth

平均交并比–mIoU

m I o U = 1 k + 1 ∑ i = 0 k p i i ∑ j = 0 k p i j + ∑ j = 0 k p i j − p i i mIoU=\frac{1}{k+1}\sum_{i=0}^k\frac{p_{ii}}{\sum_{j=0}^kp_{ij}+\sum_{j=0}^kp_{ij}-p_{ii}} mIoU=k+11i=0kj=0kpij+j=0kpijpiipii
其中,假设包括背景,总共有k+1类, p i j p_{ij} pij表示将 i 类预测为 j 类的点数 p i i p_{ii} pii表示将 i 类预测为 i 类的点数。

二分类问题中的mIoU

m I o U = 1 2 ( T P T P + F N + F P + T N T N + F P + F N ) mIoU=\frac{1}{2}(\frac{TP}{TP+FN+FP} + \frac{TN}{TN+FP+FN}) mIoU=21(TP+FN+FPTP+TN+FP+FNTN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值