- 博客(3)
- 收藏
- 关注
原创 一种基于微分演化的高维数据特征组合选择算法
原文题目:A differential evolution based feature combination selection algorithm for high-dimensional data摘要:特征组合选择用于对象分类,以选择能够产生强大组合的互补特征。选择特征组合的一个活跃领域是全基因组关联研究(GWAS)。然而,(问题)从高维GWAS数据中选择特征组合面临着计算复杂度高的严重问题。本文提出了一种快速进化优化方法,(方法)搜索历史引导微分进化(HGDE)来解决这一问题。该方法应用二进制空
2022-04-29 13:49:29 1088
原创 基于多参考点分解的多目标特征选择分类:静态和动态机制
原文题目:Multiple Reference Points-Based Decomposition for Multiobjective Feature Selection in Classifification: Static and Dynamic Mechanisms摘要总结:一、问题提出:1高度不连续的帕累托前沿2不平衡偏好3部分冲突目标二、使用方法:在基于分解(MOEA/D)的多目标进化算法框架下,采用基于多个参考点的两种机制(静态和动态)分解方法,以解决上述特.
2022-04-21 15:04:07 1254 2
转载 基于变长PSO的高维特征选择算法(VLPSO)
进化计算方向记录一下看的第一篇论文,复制了博主Reacubeth的思路摘要:粒子群优化(PSO)在特征选择(FS)方面显示出了广阔的前景。然而,目前大多数基于PSO的FS方法都使用固定长度的表示,这是不灵活的,并限制了PSO对FS的性能。当将这些方法应用于高维数据时,它不仅消耗了大量的内存,而且还需要很高的计算成本。随着数据收集技术的进步,要克服这一限制,需要PSO能够处理更高维度的数据。在本文中,我们提出了第一个针对FS的变长PSO表示方法,使粒子具有不同的长度或更短的长度,这定义了更小的搜索空间,从
2022-04-16 15:25:12 665
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人