背包问题 AcWing 4. 多重背包问题

本文详细介绍了AcWing4中的多重背包问题,通过动态规划方法求解,包括状态转移方程和优化技巧。通过实例代码演示了如何利用0初始化和负无穷边界条件找到价值最大组合。适合理解背包问题及其应用的开发者阅读。
摘要由CSDN通过智能技术生成

背包问题 AcWing 4. 多重背包问题

原题链接

AcWing 4. 多重背包问题

算法标签

背包问题 DP

思路

将其看作
若将数组全部初始化为 0 0 0 f [ m ] f[m] f[m]即为不超过背包容量 m m m的价值总和最大值。
若只将 f [ 0 ] f[0] f[0]初始化为 0 0 0, 其余初始化为负无穷, m a x [ f [ 0 ] , . . . , f [ m ] ] max[f[0], ...,f[m]] max[f[0],...,f[m]]即为不超过背包容量 m m m的价值总和最大值。
在这里插入图片描述

代码

#include<bits/stdc++.h>
#define int long long
#define rep(i, a, b) for(int i=a;i<b;++i)
#define Rep(i, a, b) for(int i=a;i>b;--i)
using namespace std;
const int N = 105;
int f[N];
inline int rd(){
   int s=0,w=1;
   char ch=getchar();
   while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
   while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
   return s*w;
}
void put(int x) {
    if(x<0) putchar('-'),x=-x;
    if(x>=10) put(x/10);
    putchar(x%10^48);
}
signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	int n=rd(), m=rd();
	rep(i, 1, n+1){
	    int v=rd(), w=rd(), s=rd();
	    // 当枚举的背包容量 >= v 时才会更新状态,因此我们可以修改循环终止条件进一步优化。
	    Rep(j, m, v-1){
	    // 第i件物品选择数量
	        for(int k=1;k<=s&&k*v<=j;++k){
	            f[j]=max(f[j], f[j-k*v]+k*w);
	        }
	    }
	}
	printf("%lld\n", f[m]);
	return 0;
}

原创不易
转载请标明出处
如果对你有所帮助 别忘啦点赞支持哈
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞滕人生TYF

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值