Dijkstra AcWing 850. Dijkstra求最短路 II

Dijkstra AcWing 850. Dijkstra求最短路 II

原题链接

AcWing 850. Dijkstra求最短路 II

算法标签

最短路 Dijkstra

思路

在这里插入图片描述
图片摘自该题解
在这里插入图片描述
图片摘自该题解

代码

#include<bits/stdc++.h>
#define x first
#define y second 
using namespace std;
typedef pair<int, int>PII;
const int N = 150005;
int n,m;
int dist[N];
// 稀疏图用邻接表来存
int h[N], w[N], e[N], ne[N], idx;
bool st[N];
void add(int a,int b,int c){
	// 有重边也不要紧,假设1->2有权重为2和3的边,再遍历到点1的时候2号点的距离会更新两次放入堆中
    // 这样堆中会有很多冗余的点,但是在弹出的时候还是会弹出最小值2+x(x为之前确定的最短路径),
    // 并标记st为true,所以下一次弹出3+x会continue不会向下执行。
    e[idx]=b;
    w[idx]=c;
    ne[idx]=h[a];
    h[a]=idx++;
}
int dij(){
    memset(dist, 0x3f , sizeof dist);
    dist[1] = 0;
    // 这里heap中为什么要存pair呢,首先小根堆是根据距离来排的,所以有一个变量要是距离,
    // 其次在从堆中拿出来的时候要知道知道这个点是哪个点,不然怎么更新邻接点呢?所以第二个变量要存点。
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0,1});
    while (heap.size()) {
        auto t = heap.top();
        heap.pop();
        int ver = t.y,dis = t.x;
        if(st[ver]){
            continue;
        }
        st[ver] = true;
        for(int i = h[ver]; ~i; i = ne[i]){
        	// i只是个下标,e中在存的是i这个下标对应的点。
            int j = e[i];
            if (dist[j] > dist[ver] + w[i]){
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    if (dist[n] == 0x3f3f3f3f){
        return -1;
    }
    return dist[n];
}
signed main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin>>n>>m;
    memset(h, -1, sizeof h);
    while(m--){
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    cout<<dij()<<"\n";
}

原创不易
转载请标明出处
如果对你有所帮助 别忘啦点赞支持哈
在这里插入图片描述

Dijkstra算法单源最短路径的经典算法,其基本思想是通过逐步扩展生成最短路径集合,最终得到源点到所有其它点的最短路径。 以下是C++实现: ```c++ #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; // 定义正无穷 struct Edge { int to, w; Edge(int to, int w) : to(to), w(w) {} }; vector<Edge> G[100010]; // 邻接表存图 int dist[100010]; // 存储最短路径长度 bool vis[100010]; // 标记是否已经确定最短路径 void dijkstra(int s) { memset(dist, INF, sizeof(dist)); // 初始化距离为正无穷 memset(vis, false, sizeof(vis)); // 初始化标记为未确定最短路径 dist[s] = 0; // 源点到自己的距离为0 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; // 小根堆 q.push(make_pair(0, s)); // 将源点入队 while(!q.empty()) { int u = q.top().second; // 取出当前距离最小的点 q.pop(); if(vis[u]) continue; // 如果已经确定最短路径,直接跳过 vis[u] = true; // 标记为已确定最短路径 for(auto e : G[u]) { // 遍历所有相邻的点 int v = e.to; int w = e.w; if(dist[v] > dist[u] + w) { // 如果当前路径更优 dist[v] = dist[u] + w; // 更新最短路径距离 q.push(make_pair(dist[v], v)); // 将该点加入小根堆 } } } } int main() { int n, m, s; cin >> n >> m >> s; for(int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back(Edge(v, w)); } dijkstra(s); for(int i = 1; i <= n; i++) { if(dist[i] == INF) cout << "INF" << endl; // 如果不连通,输出INF else cout << dist[i] << endl; } return 0; } ``` 输入格式:第一行输入三个整数n,m,s,表示图的点数、边数和源点编号。接下来m行每行三个整数u,v,w,表示一条从u到v的有向边,边权为w。 输出格式:输出n行,每行一个整数,表示源点到每个点的最短路径长度。若不连通,则输出INF。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞滕人生TYF

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值