Dijkstra AcWing 850. Dijkstra求最短路 II
原题链接
算法标签
最短路 Dijkstra
思路
代码
#include<bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef pair<int, int>PII;
const int N = 150005;
int n,m;
int dist[N];
// 稀疏图用邻接表来存
int h[N], w[N], e[N], ne[N], idx;
bool st[N];
void add(int a,int b,int c){
// 有重边也不要紧,假设1->2有权重为2和3的边,再遍历到点1的时候2号点的距离会更新两次放入堆中
// 这样堆中会有很多冗余的点,但是在弹出的时候还是会弹出最小值2+x(x为之前确定的最短路径),
// 并标记st为true,所以下一次弹出3+x会continue不会向下执行。
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
int dij(){
memset(dist, 0x3f , sizeof dist);
dist[1] = 0;
// 这里heap中为什么要存pair呢,首先小根堆是根据距离来排的,所以有一个变量要是距离,
// 其次在从堆中拿出来的时候要知道知道这个点是哪个点,不然怎么更新邻接点呢?所以第二个变量要存点。
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0,1});
while (heap.size()) {
auto t = heap.top();
heap.pop();
int ver = t.y,dis = t.x;
if(st[ver]){
continue;
}
st[ver] = true;
for(int i = h[ver]; ~i; i = ne[i]){
// i只是个下标,e中在存的是i这个下标对应的点。
int j = e[i];
if (dist[j] > dist[ver] + w[i]){
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f){
return -1;
}
return dist[n];
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin>>n>>m;
memset(h, -1, sizeof h);
while(m--){
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
cout<<dij()<<"\n";
}
原创不易
转载请标明出处
如果对你有所帮助 别忘啦点赞支持哈