第六章 图论 13 AcWing 1643. 旅行商问题
原题链接
算法标签
图论 模拟
思路
依题意模拟,具体思路见代码
代码
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
// #define int long long
#define x first
#define y second
#define ump unordered_map
#define pq priority_queue
#define rep(i, a, b) for(int i=a;i<b;++i)
#define Rep(i, a, b) for(int i=a;i>=b;--i)
using namespace std;
typedef pair<int, int> PII;
const int N=205, INF=0x3f3f3f3f;
//int t, n, m, cnt, ans;
int n, m, k;
int g[N][N], ver[305];
bool st[N];
inline int rd(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
void put(int x) {
if(x<0) putchar('-'),x=-x;
if(x>=10) put(x/10);
putchar(x%10^48);
}
// signed main(){
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
n=rd(), m=rd();
memset(g, 0x3f, sizeof g);
while(m--){
int a, b, c;
a=rd(), b=rd(), c=rd();
g[a][b]=g[b][a]=c;
}
k=rd();
int mn=INF, mnid;
rep(i, 1, k+1){
int sum=0, suss=true;
int nn=rd();
memset(st, 0, sizeof st);
rep(j, 0, nn){
ver[j]=rd();
}
// 判断路径中经过的城市的距离是否存在,若不存在,则输出 NA
rep(j, 0, nn-1){
int a=ver[j], b=ver[j+1];
if(g[a][b]==INF){
sum=-1;
suss=false;
break;
}else{
sum+=g[a][b];
}
st[a]=true;
}
// 判断每个点是否都被访问
rep(j, 1, n+1){
if(!st[j]){
suss=false;
break;
}
}
// 判断是否为回路
if(ver[0]!=ver[nn-1]){
suss=false;
}
if(sum==-1){
printf("Path %d: NA (Not a TS cycle)\n", i);
}else{
if(!suss){
printf("Path %d: %d (Not a TS cycle)\n", i, sum);
}else{
if(nn==n+1){
printf("Path %d: %d (TS simple cycle)\n", i, sum);
}else{
printf("Path %d: %d (TS cycle)\n", i, sum);
}
if(mn>sum){
mn=sum;
mnid=i;
}
}
}
}
printf("Shortest Dist(%d) = %d", mnid, mn);
return 0;
}
参考文献
AcWing 1643. 旅行商问题(PAT甲级辅导课)y总视频讲解
原创不易
转载请标明出处
如果对你有所帮助 别忘啦点赞支持哈