第八章 动态规划 AcWing 1479. 最大子序列和
原题链接
算法标签
贪心DP
思路
使用闫氏DP分析法计算最大子序列的各元素之和
如何得到最大子序列和下标最小的起点与终点
从前向后遍历,判断当前子序列的各元素之和与是否比之前确定的子序列的各元素之和大,若是,更新起点和终点,若当前子序列的各元素之和<0,前面的子序列舍弃,从i+1下标重新开始
代码
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define int long long
#define x first
#define y second
#define ump unordered_map
#define ums unordered_set
#define pq priority_queue
#define rep(i, a, b) for(int i=a;i<b;++i)
#define Rep(i, a, b) for(int i=a;i>=b;--i)
using namespace std;
typedef pair<int, int> PII;
const int N=10005, INF=0x3f3f3f3f3f3f3f3f;
const double Exp=1e-8;
//int t, n, m, cnt, ans;
int n, w[N];
inline int rd(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
void put(int x) {
if(x<0) putchar('-'),x=-x;
if(x>=10) put(x/10);
putchar(x%10^48);
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
n=rd();
rep(i, 1, n+1){
w[i]=rd();
}
int res=-1, l, r;
for(int i=1, f=-1, start; i<=n; ++i){
if(f<0){
f=0;
start=i;
}
f+=w[i];
if(f>res){
res=f;
l=w[start];
r=w[i];
}
}
if(res<0){
printf("%lld %lld %lld", 0, w[1], w[n]);
}else{
printf("%lld %lld %lld", res, l, r);
}
return 0;
}
参考文献
AcWing 1479. 最大子序列和(PAT甲级辅导课)y总视频讲解
原创不易
转载请标明出处
如果对你有所帮助 别忘啦点赞支持哈