第十章 并查集1 AcWing 1485. 战争中的城市
原题链接
算法标签
并查集
思路
对于K个查询点, 查询与该点不相关的边,使用并查集计算与该点不相关的边可以构成的连通块个数,连通块个数-1即为答案
代码
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define int long long
#define xx first
#define yy second
#define ump unordered_map
#define us unordered_set
#define pq priority_queue
#define rep(i, a, b) for(int i=a;i<b;++i)
#define Rep(i, a, b) for(int i=a;i>=b;--i)
using namespace std;
typedef pair<int, int> PII;
const int N=1005, M=500005, inf=0x3f3f3f3f3f3f3f3f, mod=1e9+7;
const double Exp=1e-8;
//int t, n, m, cnt, ans;
int n, m, k, x, p[N], cnt;
inline int rd(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
void put(int x) {
if(x<0) putchar('-'),x=-x;
if(x>=10) put(x/10);
putchar(x%10^48);
}
struct Ed{
int a, b;
}e[M];
int find(int x){
if(p[x]!=x){
return p[x]=find(p[x]);
}
return p[x];
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
n=rd(), m=rd(), k=rd();
rep(i, 0, m){
e[i].a=rd(), e[i].b=rd();
}
while(k--){
// 删除当前点,起始连通块个数为n-1
cnt=n-1;
x=rd();
rep(i, 1, n+1){
p[i]=i;
}
rep(i, 0, m){
int a=e[i].a, b=e[i].b;
if(a!=x&&b!=x){
int pa=find(a), pb=find(b);
if(pa!=pb){
p[pa]=pb;
cnt--;
}
}
}
printf("%lld\n", cnt-1);
}
return 0;
}
参考文献
AcWing 1485. 战争中的城市(PAT甲级辅导课)y总视频讲解
原创不易
转载请标明出处
如果对你有所帮助 别忘啦点赞支持哈