点到圆弧的距离

Description

输入一个点P和一条圆弧(圆周的一部分),你的任务是计算P到圆弧的最短距离。换句话说,你需要在圆弧上找一个点,到P点的距离最小。
提示:请尽量使用精确算法。相比之下,近似算法更难通过本题的数据。

Input

输入包含最多10000组数据。每组数据包含8个整数x1, y1, x2, y2, x3, y3, xp, yp。圆弧的起点是A(x1,y1),经过点B(x2,y2),结束位置是C(x3,y3)。点P的位置是 (xp,yp)。输入保证A, B, C各不相同且不会共线。上述所有点的坐标绝对值不超过20。

Output

对于每组数据,输出测试点编号和P到圆弧的距离,保留三位小数。你的输出和标准输出之间最多能有0.001的误差。

Sample Input

<span class="sampledata" style="font-family: monospace; font-size: 18px; white-space: pre; background-color: rgb(141, 184, 255);">0 0 1 1 2 0 1 -1
3 4 0 5 -3 4 0 1</span>

Sample Output

<span class="sampledata" style="font-family: monospace; font-size: 18px; white-space: pre; background-color: rgb(141, 184, 255);">Case 1: 1.414
Case 2: 4.000</span>

HINT

Source


PS:

分两种情况:

第一种:点跟圆心的连线那段扇形的圆弧范围内,点到圆弧的最短距离为点到圆心的距离减去半径然后取绝对值;

第二种:点跟圆心的连线不在那段扇形的圆弧范围内,点到圆弧的最短的距离为到这段圆弧的两个端点的最小值。


代码如下:(参考夏笑声

[cpp]  view plain  copy
 print ? 在CODE上查看代码片 派生到我的代码片
  1. #include <cstdio>  
  2. #include <cstring>  
  3. #include <cmath>  
  4. #include <iostream>  
  5. #include <algorithm>  
  6. using namespace std;  
  7. const double PI = acos(-1.0);  
  8.   
  9. struct Point  
  10. {  
  11.     double x,y;  
  12.     friend Point operator - (Point a,Point b) //重载友元运算符  
  13.     {  
  14.         Point temp;  
  15.         temp.x = a.x - b.x;  
  16.         temp.y = a.y - b.y;  
  17.         return temp;  
  18.     }  
  19. };  
  20.   
  21. Point p1, p2, p3, pc, pp;  
  22. double r;  
  23.   
  24. Point get_pc1(Point p1, Point p2, Point p3)  //求圆心  
  25. {  
  26.     double a, b, c, d, e, f;  
  27.     Point p;  
  28.     a = 2*(p2.x-p1.x);  
  29.     b = 2*(p2.y-p1.y);  
  30.     c = p2.x*p2.x+p2.y*p2.y-p1.x*p1.x-p1.y*p1.y;  
  31.     d = 2*(p3.x-p2.x);  
  32.     e = 2*(p3.y-p2.y);  
  33.     f = p3.x*p3.x+p3.y*p3.y-p2.x*p2.x-p2.y*p2.y;  
  34.     p.x = (b*f-e*c)/(b*d-e*a);  
  35.     p.y = (d*c-a*f)/(b*d-e*a);  
  36.     r = sqrt((p.x-p1.x)*(p.x-p1.x)+(p.y-p1.y)*(p.y-p1.y));//半径  
  37.     return p;  
  38. }  
  39. double dis(Point a,Point b)  
  40. {  
  41.     return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));  
  42. }  
  43. double mult_cha(Point p1,Point p2)   //叉积  
  44. {  
  45.     return p1.x * p2.y - p2.x * p1.y;  
  46. }  
  47.   
  48. double get_ans(Point pc,Point pp,Point p1,Point p2,Point p3)  
  49. {  
  50.     double temp = mult_cha(p2-p1,p3-p1);//判断给点方向是顺时针还是逆时针  
  51.     double f1 = atan2((p1-pc).y,(p1-pc).x);//和x正半轴的夹角  
  52.     double f2 = atan2((p2-pc).y,(p2-pc).x);  
  53.     double f3 = atan2((p3-pc).y,(p3-pc).x);  
  54.     double f4 = atan2((pp-pc).y,(pp-pc).x);  
  55.   
  56.     double ans1 = fabs(dis(pp,pc) - r);//到圆心减去半径  
  57.     double ans2 = min(dis(pp,p1),dis(pp,p3));//取到端点的较小值  
  58.   
  59.     if(temp < 0)    //顺时针给点  
  60.     {  
  61.         if(f1 < f3) //判断区间方向,向下凹  
  62.         {  
  63.             if((f2 >= f1 && f2 <= f3) == (f4 >= f1 && f4 <= f3) )//p点和p2点在同一个区间  
  64.                 return ans1;  
  65.             else                        //p点和p2点不在同一个区间  
  66.                 return ans2;  
  67.         }  
  68.         else//向上凸  
  69.         {  
  70.             if((f2 >= f3 && f2 <= f1) == (f4 >=f3 && f4 <= f1) )  
  71.                 return ans1;  
  72.             else  
  73.                 return ans2;  
  74.         }  
  75.     }  
  76.     else  
  77.     {  
  78.         if(f1 > f3)  
  79.         {  
  80.             if((f2 <= f1 && f2 >= f3) == (f4 <= f1 && f4 >= f3) )  
  81.                 return ans1;  
  82.             else  
  83.                 return ans2;  
  84.         }  
  85.         else  
  86.         {  
  87.             if((f2 <= f3 && f2 >= f1) == (f4 <= f3 && f4 >= f1) )  
  88.                 return ans1;  
  89.             else  
  90.                 return ans2;  
  91.         }  
  92.     }  
  93. }  
  94.   
  95. int main()  
  96. {  
  97.     int cas = 0;  
  98.     while(~scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&p1.x,&p1.y,&p2.x,&p2.y,&p3.x,&p3.y,&pp.x,&pp.y))  
  99.     {  
  100.         pc = get_pc1(p1,p2,p3);//圆心  
  101.         double ans = get_ans(pc,pp,p1,p2,p3);  
  102.   
  103.         printf("Case %d: %.3lf\n",++cas,ans);  
  104.     }  
  105.     return 0;  
  106. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值