转自https://blog.csdn.net/sinat_36458870/article/details/78825571,有修改
1.代码
# encoding:utf-8
import math
import cv2
import numpy as np
import matplotlib.pyplot as plt
def get_image(path): # 获取图片
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img, gray
def Gaussian_Blur(gray): # 高斯去噪(去除图像中的噪点)
blurred = cv2.GaussianBlur(gray, (9, 9), 0)
return blurred
def Sobel_gradient(blurred): # 计算梯度
gradX = cv2.Sobel(blurred, ddepth=cv2.CV_32F, dx=1, dy=0)
gradY = cv2.Sobel(blurred, ddepth=cv2.CV_32F, dx=0, dy=1)
gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)
return gradX, gradY, gradient
def Thresh_and_blur(gradient): # 设定阈值
blurred = cv2.GaussianBlur(gradient, (9, 9), 0)
(_, thresh) = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY)
return thresh
def image_morphology(thresh): # 图形形态学
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (25, 25))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
closed = cv2.erode(closed, None, iterations=4)
closed = cv2.dilate(closed, None, iterations=4)
return closed
def findcnts_and_box_point(closed): # 计算最大轮廓的旋转包围box
(cnts, test) = cv2.findContours(closed.copy(),
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))
print(box)
return box
def drawcnts_and_cut(original_img, box): # 目标图像裁剪
draw_img = cv2.drawContours(original_img.copy(), [box], -1, (0, 0, 255), 3)
Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
angle = round(-math.atan((Ys[1] - Ys[0]) / (abs(Xs[1] - Xs[0]))) * 360 / (2 * np.pi), 1)
print(angle)
rows, cols = draw_img.shape[:2]
# 计算框中心
center = ((Xs[1]+Xs[3]) / 2.0, (Ys[1]+Ys[3]) / 2.0)
# 计算框长宽
xx = ((Ys[2]-Ys[3])**2 + (Xs[2]-Xs[3])**2)**0.5
yy = ((Ys[2]-Ys[1])**2 + (Xs[2]-Xs[1])**2)**0.5
M = cv2.getRotationMatrix2D(center, 360 - round(angle, 1), 1)
dst = cv2.warpAffine(draw_img, M, (cols, rows))
crop_img = cv2.getRectSubPix(dst, (int(xx), int(yy)), center)
return draw_img, crop_img
def work():
img_path = r'./01.bmp'
save_path = r'./01_save.bmp'
# original_img, gray = get_image(img_path)
gray = cv2.imread("01.bmp", 0)
original_img = gray.copy()
blurred = Gaussian_Blur(gray)
gradX, gradY, gradient = Sobel_gradient(blurred)
thresh = Thresh_and_blur(gradient)
closed = image_morphology(thresh)
box = findcnts_and_box_point(closed)
draw_img, crop_img = drawcnts_and_cut(original_img, box)
img_list = [original_img, blurred, gradX, gradY, gradient,
thresh, closed,draw_img, crop_img]
img_name = ["原图像", "高斯模糊", "x方向梯度", "y方向梯度", "梯度",
"二值化", "图像形态学", "图片分割", "旋转切割结果"]
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
_, axs = plt.subplots(3, 3, figsize=(12, 12))
for i in range(3):
for j in range(3):
axs[i][j].imshow(img_list[i * 3 + j], cmap='gray')
axs[i][j].set_title(img_name[i * 3 + j])
axs[i][j].axes.get_xaxis().set_visible(False)
axs[i][j].axes.get_yaxis().set_visible(False)
plt.show()
work()