YOLO V2(You Only Look Once version 2)是一种基于卷积神经网络的实时目标检测系统,由Joseph Redmon和他的同事在2016年提出。它是YOLO算法的升级版,通过多项改进显著提高了检测速度和精度。本文将详细介绍YOLO V2的网络架构及其关键特性。
一、网络架构概述
YOLO V2的网络架构主要由两部分组成:主干网络(Backbone)和检测层(Detection Layer)。主干网络负责提取图像特征,而检测层则基于这些特征进行物体检测。
二、主干网络:Darknet-19
Darknet-19是YOLO V2的核心主干网络,它包含19个卷积层和5个最大池化层,没有全连接层。这使得网络输入图像大小可以任意,但为了满足多次降采样的需求,输入图像的大小必须满足32的倍数。
-
卷积层:Darknet-19的前4个卷积层使用较小的3x3卷积核,后3个卷积层使用较大的1x1卷积核。1x1卷积层主要用于节省参数。
-
池化层:网络中有5个最大池化层,用于对卷积层输出的特征图进行下采样,减少特征图的大小,降低计算量。
-
Batch Normalization:每个卷积层之后都添加了Batch Normalization层,以加速收敛并稳定训练过程。这一改进使得网络的每一层输入都做了归一化,减少了过拟合现象,并提升了2%的mAP(mean Average Precision)。