欧拉计划 第2题

   题目
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
  1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. 
在斐波那契数列中,找出4百万以下的项中值为偶数的项之和。
斐波那契数列中的每一项被定义为前两项之和。从1和2开始,斐波那契数列的前十项为:1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
考虑斐波那契数列中数值不超过4百万的项,找出这些项中值为偶数的项之和。
解答:这题也比较简单,该题数据比较小,如果数据比较大时就要注意数据类型的长度和大小范围,如果想了解可以参考http://blog.csdn.net/tabyou/article/details/20214819
Java程序代码如下
public class N_2 {
	public static void main(String []args)
	{
		int a = 1,b=2;
		int sum = 0;
		while(b<4000000)
		{
			if(b%2==0)
			{
				sum += b;
			}
			b = a+b;
			a = b-a;
		}
		System.out.println(sum);
	}
}


运行结果:4613732

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值