这次没有看卡哥的代码,因为理解有问题,直接看了力扣上的代码。
题目如下:
一、在排序数组中查找元素的第一个和最后一个位置
给你一个按照非递减顺序排列的整数数组 nums
,和一个目标值 target
。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target
,返回 [-1, -1]
。
你必须设计并实现时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [5,7,7,8,8,10]
, target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10]
, target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0 输出:[-1,-1]
代码如下:
class Solution {
public:
//不用管什么大于等于的,就直接找等于的就好
vector<int> searchRange(vector<int>& nums, int target) {
int searchleft = searchLeft(nums,target);
int searchright = searchRight(nums,target);
return {searchleft,searchright};
}
//找左边界
int searchLeft(vector<int>& nums,int target){
int left=0,right=nums.size()-1,middle,searchleft=-1;
while(left<=right){
middle=left+(right-left)/2;
if(nums[middle]==target){
searchleft=middle;//左边界等于middle
right=middle-1;//继续往左找最左等的那个数
}else if(nums[middle]<target){
left=middle+1;
}else{
right=middle-1;
}
}return searchleft;
}
//找右边界
int searchRight(vector<int>& nums,int target){
int left=0,right=nums.size()-1,middle,searchright=-1;
while(left<=right){
middle=left+(right-left)/2;
if(nums[middle]==target){
searchright=middle;
left=middle+1;
}else if(nums[middle]<target){
left=middle+1;
}else{
right=middle-1;
}
}return searchright;
}
};
二、x的平方根
给你一个非负整数 x
,计算并返回 x
的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5)
或者 x ** 0.5
。
示例 1:
输入:x = 4 输出:2
示例 2:
输入:x = 8 输出:2 解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
与之前的二分法不一样的是,不一定等于才能记录答案,小于也可以记录答案,然后一点一点推进。
代码如下:
class Solution {
public:
int mySqrt(int x) {
int left=0,right=x,middle,ans=-1;
while(left<=right){
middle=left+(right-left)/2;
if((long long)middle*middle<=x){
ans=middle;
left=middle+1;
}else if((long long)middle*middle>x){
right=middle-1;
}
}return ans;
}
};