[BZOJ1179]APIO2009 ATM |强联通分量|DP

 这题和1093差不多,也就是缩环之后spfa/拓扑排序/记忆化搜索搞一下,多注意一点的就是一个点有酒吧的时候它才能向前更新答案。。

#include<cstdio>
#include<iostream>
#include<memory.h>
#define N 1000005
#define clr(a) memset(a,0,sizeof(a))
using namespace std;
struct edge
{
  int e,next;
}ed[N];
int n,m,s,e,p,i,j,ne=0,top=0,t=0,scc,a[N],dfn[N],low[N],belong[N],st[N],ins[N],bar[N],dp[N],v[N];
void add(int s,int e)
{
  ed[++ne].e=e;ed[ne].next=a[s];
  a[s]=ne;
}
void tarjan(int x)
{
  dfn[x]=low[x]=++t;
  ins[x]=1;st[++top]=x;
  int to;
  for (int j=a[x];j;j=ed[j].next)
	if (!dfn[to=ed[j].e]) tarjan(to),low[x]=min(low[x],low[to]);
	else if (ins[to]) low[x]=min(low[x],dfn[to]);
  if (dfn[x]==low[x])
	{
	  ++scc;
	  while (st[top+1]!=x)
		{
		  belong[st[top--]]=scc;
		  v[scc]+=v[st[top+1]];
		  ins[st[top+1]]=0;
		  if (bar[st[top+1]]) bar[scc]=1;
		}
	}
}
void dfs(int x)
{
  dfn[x]=1;
  int to;
  if (bar[x]) dp[x]=v[x];else dp[x]=0;
  for (int j=a[x];j;j=ed[j].next)
	{
	  if (!dfn[to=ed[j].e]) dfs(to);
	  if (dp[to]) dp[x]=max(dp[x],dp[to]+v[x]);
	}
}
int main()
{
  freopen("1179.in","r",stdin);
  scanf("%d%d",&n,&m);
  clr(a);clr(v);
  for (i=1;i<=m;i++)
	{
	  scanf("%d%d",&s,&e);
	  add(s,e);
	}
  for (i=1;i<=n;i++) scanf("%d",&v[i]);
  scanf("%d%d",&s,&p);
  clr(bar);
  for(i=1;i<=p;i++)
	{
	  scanf("%d",&e);
	  bar[e]=1;
	}
  clr(dfn);clr(low);clr(ins);clr(belong);scc=n;
  tarjan(s);
  for (i=1;i<=n;i++)
	for (j=a[i];j;j=ed[j].next)
	  if (belong[i]&&belong[ed[j].e]&&belong[i]!=belong[ed[j].e]) add(belong[i],belong[ed[j].e]);
  dfs(belong[s]);
  printf("%d\n",dp[belong[s]]);
}


内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值