[BZOJ1412]ZJOI2009狼和羊的故事|最小割

源向羊连边,汇向狼连边,羊向狼和空地连边,狼向空地和羊连边,空地向狼、羊和空地连边,答案就是最小割(最大流)。。

#include<cstdio>
#include<iostream>
#include<memory.h>
#define N 105
#define inf 9999999
using namespace std;
struct edge{
	int e,f,next;
}ed[10*N*N];
int n,m,i,j,nd,x,ne=1,a[N*N],d[N*N],u[N*N],que[N*N],map[N][N];
void add(int s,int e,int f)
{
	ed[++ne].e=e;ed[ne].f=f;
	ed[ne].next=a[s];a[s]=ne;
}
bool bfs(int s,int t)
{
	int head=1,tail=1,get,i,j;
	for (i=0;i<=nd;i++) u[i]=d[i]=0;
	que[1]=s;u[s]=1;
	while (head<=tail)
	{
		get=que[head++];
		for (j=a[get];j;j=ed[j].next)
			if (ed[j].f&&!u[ed[j].e])
			{
				d[ed[j].e]=d[get]+1;
				u[ed[j].e]=1;
				que[++tail]=ed[j].e;
			}
	}
	return d[t]!=0;
}
int extend(int x,int minf,int t)
{
	if (x==t) return minf;
	int f=minf,del,j;
	for (j=a[x];j;j=ed[j].next)
		if (ed[j].f&&d[x]+1==d[ed[j].e])
		{
			del=extend(ed[j].e,min(minf,ed[j].f),t);
			ed[j].f-=del;ed[j^1].f+=del;
			minf-=del;
			if (!minf) break;
		}
	if (f==minf) d[x]=0;
	return f-minf;
}
int dinic(int s,int t)
{
	int ans=0;
	while (bfs(s,t)) ans+=extend(s,inf,t);
	return ans;
}
int main()
{
	freopen("1412.in","r",stdin);
	scanf("%d%d",&n,&m);
	memset(a,0,sizeof(a));
	nd=n*m+1;
	for (i=1;i<=n;i++)
		for (j=1;j<=m;j++)
		{
			x=(i-1)*m+j;
			scanf("%d",&map[i][j]);
			if (map[i][j]==1) add(0,x,inf),add(x,0,0);
			if (map[i][j]==2) add(x,nd,inf),add(nd,x,0);
			if (i-1/*&&map[i-1][j]!=map[i][j]*/) add(x,x-m,1),add(x-m,x,1); 
			if (j-1/*&&map[i][j-1]!=map[i][j]*/) add(x,x-1,1),add(x-1,x,1);
		}
	printf("%d",dinic(0,nd));
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值