[BZOJ2006]NOI2010超级钢琴|DP|堆|RMQ

    NOI题果然难得多,不会做啊。。后来看题解有说是要主席树啥的,,理解不了。。看懂了一个RMQ+堆的。。考虑一个序列的起点i,终点的范围是可以计算的,然后维护一下前缀和sum,起点的sum一定,那么终点的sum最大是答案最优,找这个最大可以用ST算法搞定。。对于一个四元组(slrm)表示起点为s,终点在[l,r]内,最优解在终点为m取到,然后以四元组的最优解大小为key对每一个点为起点的四元组维护一个大根堆,每次取出堆顶的(slrm),累加答案,再将(slm-1m’)和(sm+1rm’’)放进堆,取k次就算出答案来了。。这种思想极为巧妙。。太神了。。

#include<iostream>
#include<cstdio>
#include<cmath>
#define N 500005
#define ll long long
using namespace std;
struct node{
	int s,l,r,m;
	node(){};
	node(int s,int l,int r,int m):s(s),l(l),r(r),m(m){};
} heap[N*2],t;
int n,k,l,r,i,j,L,R,nd=0,f[N][21];
ll ans=0ll,sum[N];
int Max(int a,int b)
{
	if (sum[a]>sum[b]) return a;else return b;
}
void st()
{
	int i,j;
	for (j=1;j<20;j++)
		for (i=1;i<=n-(1<<j)+1;i++)
			f[i][j]=Max(f[i][j-1],f[i+(1<<j-1)][j-1]);
}
int qmax(int l,int r)
{
	double t=(double)log(r-l+1)/(double)log(2);
	int k=t;
	return Max(f[l][k],f[r-(1<<k)+1][k]);
}
bool operator<(node a,node b)
{
	return sum[a.m]-sum[a.s-1]<sum[b.m]-sum[b.s-1];
}
void ins(node a)
{
	heap[++nd]=a;
	int i=nd;
	while (i>1&&heap[i/2]<heap[i]) swap(heap[i/2],heap[i]),i/=2;
}
void del()
{
	heap[1]=heap[nd--];
	int i=1;
	while ((i*=2)<=nd)
	{
		if (i<nd&&heap[i]<heap[i+1]) ++i;
		if (heap[i/2]<heap[i]) swap(heap[i/2],heap[i]); else break;
	}
}
int main()
{
	freopen("2006.in","r",stdin);
	scanf("%d%d%d%d",&n,&k,&l,&r);
	sum[0]=0ll;
	for (i=1;i<=n;i++)
	{
		scanf("%I64d",&sum[i]);
		sum[i]+=sum[i-1];
		f[i][0]=i;
	}
	st();
	for (i=1;i<=n;i++)
		if (i+l-1>n) break;
		else
		{
			L=i+l-1;R=min(n,i+r-1);
			ins(node(i,L,R,qmax(L,R)));
		}
	for (i=1;i<=k;i++)
	{
		t=heap[1];
		ans+=sum[t.m]-sum[t.s-1];
		del();
		if (t.m-1>=t.l) ins(node(t.s,t.l,t.m-1,qmax(t.l,t.m-1)));
		if (t.r>=t.m+1) ins(node(t.s,t.m+1,t.r,qmax(t.m+1,t.r)));
	}
	printf("%I64d\n",ans);
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值