一开始以为是水题,后来发现第二问才是重要的地方QAQ。。
第一问二分答案+贪心,得出答案len。第二问的话f[i][j]表示前i根木棍断j个地方且满足第一问的方案数,枚举第j次断的地方进行转移,f[i][j]=sigma(f[k][j-1])(sum[k+1][i]<=len)可以得到O(nm^2)的算法,空间O(nm),都承受不了。。
发现i往后的时候k只会往后或不动,所以可以直接用一个变量sumf累加起f[k到i-1][j-1],然后往后的时候维护一下k的位置和sumf的大小就行了,O(nm)。。再把j放到最外层阶段,转移到j和j-1的f有关,滚动数组就可以了,空间O(n)。。
边界要小心处理。。
#include<cstdio>
#include<iostream>
#define N 50005
#define p 10007
using namespace std;
int n,m,i,j,ans1,ans2,sumf,k,now,f[N][2],sum[N],a[N];
bool check(int k)
{
int cnt=0,now=0;
for (int i=1;i<=n;i++)
if (now+a[i]<=k) now+=a[i];
else if (a[i]>k)return false; else now=a[i],cnt++;
if (cnt>m) return false; else return true;
}
int binary()
{
int l=1,r=sum[n],mid;
while (l<r)
{
int mid=(l+r)>>1;
if (check(mid)) r=mid;else l=mid+1;
}
return l;
}
int main()
{
freopen("1044.in","r",stdin);
freopen("my.out","w",stdout);
scanf("%d%d",&n,&m);
sum[0]=0;
for (i=1;i<=n;i++) scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i],f[i][1]=0;
ans1=binary();
now=0;ans2=0;f[0][0]=f[0][1]=0;
for (j=0;j<=m;j++)
{
k=0;sumf=0;
for (i=1;i<=n;i++)
if (j==0)
if (sum[i]<=ans1) f[i][now]=1;else f[i][now]=0;
else
{
while (k<i-1&&sum[i]-sum[k]>ans1)
{
sumf-=f[k][now^1];
sumf=(sumf+p)%p;
k++;
}//printf("%d ",sumf);
f[i][now]=sumf;
sumf=(sumf+f[i][now^1])%p;;
}
// printf("\n");
ans2=(ans2+f[n][now])%p;
now^=1;
}
printf("%d %d\n",ans1,ans2);
}