int temp(const void* a1,const void*a2)
{
return *(int*)a1 - *(int*)a2; //升序
}
int** fourSum(int* nums, int numsSize, int target, int* returnSize, int** returnColumnSizes){
qsort(nums, numsSize, sizeof(int), temp);
int base=48;
int** ret=malloc(sizeof(int*)*base);
*returnColumnSizes=(int*)malloc(sizeof(int)*base);
*returnSize=0;
int l,r;
for(int i=0;i<numsSize;i++)
{
if(i>0&&nums[i]==nums[i-1])
{
continue;
}
for(int j=i+1;j<numsSize;j++)
{
if(j>i+1&&nums[j]==nums[j-1])
{
continue;
}
l=j+1;
r=numsSize-1;
while(l<r)
{
long sum=(long)nums[i]+(long)nums[j]+(long)nums[l]+(long)nums[r];
if(sum==target)
{
ret[(*returnSize)]=malloc(sizeof(int)*4);
(*returnColumnSizes)[(*returnSize)]=4;
ret[(*returnSize)][0]=nums[i];
ret[(*returnSize)][1]=nums[j];
ret[(*returnSize)][2]=nums[r];
ret[(*returnSize)][3]=nums[l];
(*returnSize)++;
if((*returnSize)==base)
{
base*=2;
ret=realloc(ret, sizeof(int*)*base);
*returnColumnSizes=(int*)realloc(*returnColumnSizes, sizeof(int)*base);
}
int num1=nums[l],num2=nums[r];
while(num1==nums[l]&&l<r)
{
l++;
}
while(num2==nums[r]&&l<r)
{
r--;
}
}
else if(sum>target)
{
r--;
}
else
{
l++;
}
}
}
}
return ret;
}
一、出错点
sorry,这题和上题一样让我懵逼
但是思路还是慢慢开始理解了
二、理解后的思路
四数之和,和15.三数之和 (opens new window)是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 (opens new window)的基础上再套一层for循环。
但是有一些细节需要注意,例如: 不要判断nums[k] > target
就返回了,三数之和 可以通过 nums[i] > 0
就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1]
,target
是-10
,不能因为-4 > -10
而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)
就可以了。
15.三数之和 (opens new window)的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。
那么一样的道理,五数之和、六数之和等等都采用这种解法。
对于15.三数之和 (opens new window)双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。
之前我们讲过哈希表的经典题目:454.四数相加II (opens new window),相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。
而454.四数相加II (opens new window)是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!
三、总结
学会查阅资料,培养自己克服困难的能力。
然后多照着敲几次代码!