self-attention未masked时,都能互相使用信息。在实际中,我们知道生成一个句子时,我们无法看到后面的信息。比如生成我爱你,当生成“爱”时只能用到“我”的信息,并不能用到“你”的信息。 但是在训练时,我们要给模型并行语料去学习,输入 I LOVE YOU 希望模型翻译成 我 爱 你,但同时又要模拟真实情况下的输入,那么我们给decoder输入相应的译文中,要掩码掉部分信息,使其让模型不可见这部分信息。如图masked后,a2、a3不可连接到b1。那么矩阵中黄色部分就得取值为0,使代码对这部分不可运算。这也是为什么在transformer中的masked阶段要生成一个上三角矩阵的原因。
transformer中masked attention 取上三角矩阵的原因
最新推荐文章于 2025-03-29 11:41:23 发布