守卫

守卫

题解

这道题是一个区间dp。若[l,r]中必须放一个点才能看完这个区间。

我们先确定右端点,  然后从左往右扫,记p为r能看到的最左端的点。在扫的过程中,用sum记录p及其右的答案。r最左边只能看到p,所以p-1 的纵坐标必定小于p即[l,p-1]中,p与p-1中必定有一个点被选。

因此dp式为

dp_{i,j}= sum+min\left ( dp_{l,p-1},dp_{l,p} \right )

扫的过程中,需要更新sum与p。sum更新后,把p更为l。

只要slope(l,r)> slope(p,r),l就可见

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream> 
#include<algorithm>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
typedef long long LL;
#define gc() getchar()
LL n,h[5005],dp[5005][5005],ans;
template<typename _T>
inline void read(_T &x)
{
	_T f=1;x=0;char s=gc();
	while(s>'9'||s<'0'){if(s=='-')f=-1;s=gc();}
	while(s>='0'&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=gc();}
	x*=f;
}
double slope(LL l,LL r)
{
	return (1.0*(h[r]-h[l]))/(1.0*(r-l)); 
}
bool query(LL a,LL b,LL c)
{
	return slope(c,a)<slope(b,c);
}
int main()
{
	read(n);
	for(int i=1;i<=n;i++) read(h[i]);
	for(int i=1;i<=n;i++) dp[i][i]=1,ans^=1;//初始化
	for(int i=1;i<=n;i++)
	{
		LL sum=1,p=0;
		for(int j=i-1;j>0;j--)
		{
			if(query(j,p,i)||p==0) 
				sum+=min(dp[j+1][p-1],dp[j+1][p]),p=j;//更新sum与p
			dp[j][i]=sum+min(dp[j][p-1],dp[j][p]);//dp从i到j的区间
			ans^=dp[j][i];//ans异或dp值
			//printf("%d %d:%d\n",j,i,dp[j][i]);
		}
	}
	printf("%lld",ans);
	return 0;
}

 

谢谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值