Treap平衡树学习

Treap平衡树

今天学习了Treap平衡树,记录一下心得。



前导:二叉查找树BST(Binary Search Tree)

概率

  • 二叉查找树(Binary Search Tree)是基于插入思想的一种在线的排序数据结构。 它又叫二叉搜索树(Binary Search Tree)、二叉排序树(Binary Sort Tree),简称 BST。 
  • 这种数据结构的基本思想是在二叉树的基础上,规定一定的顺序,使数据可以有序地存储。二叉查找树运用了像二分查找一样的查找方式,并且基于链式结构存储,从而实现了高效的查找效率和完美的插入时间。

定义

 二叉查找树(Binary Search Tree)或者是一棵空树,或者是具有下列性质的二叉树: 

  1.  若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2.  若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3.  它的左、右子树也分别为二叉查找树

查找

  • 对于一个已知的二叉查找树,在其中查找特定的值,方法如下。
  1. 从根节点开始查找;
  2. 如果当前节点的值就是要查找的值,查找成功;
  3. 如果要查找的值小于当前节点的值,在当前节点的左子树中查找该值;
  4. 如果要查找的值大于当前节点的值,在当前节点的右子树中查找该值;
  5. 如果当前节点为空节点,查找失败,二叉查找树中没有要查找的值。
  • 通过返回结点是否为NIL,可以判断查找是否成功。
  • 查找的期望时间复杂度为O(logN)。

插入新结点

  • 在二叉查找树中插入元素,要建立在查找的基础上。基本方法是类似于线性表中的二分查找,不断地在树中缩小范围定位,最终找到一个合适的位置插入。具体方法如下所述。
  1. 从根节点开始插入;
  2. 如果要插入的值小于等于当前节点的值,在当前节点的左子树中插入;
  3. 如果要插入的值大于当前节点的值,在当前节点的右子树中插入;
  4. 如果当前节点为空节点,在此建立新的节点,该节点的值为要插入的值,左右子树为空,插入 成功。
  • 对于相同的元素,一种方法我们规定把它插入左边或者右边,另一种方法是我们在节点上再加一 个域cnt,记录重复节点的个数。
  • 插入的期望时间复杂度为O(logN)。

删除结点

  • 二叉查找树的删除稍有些复杂,要分三种情况分别讨论。基本方法是要先在二叉 查找树中找到要删除的结点的位置,然后根据结点分以下情况:
  • 情况一,该节点是叶节点(没有非空子节点的节点),直接把节点删除即可。
  • 情况二,该节点是链节点(只有一个非空子节点的节点),为了删除这个节点而不 影响它的子树,需要把它的子节点代替它的位置,然后把它删除。如图所示,删 除节点2时,需要把它的左子节点代替它的位置。

  • 情况三,该节点有两个非空子节点。由于情况比较复杂,一般的策略是用它右子 树的最小值来代替它,然后把它删除。如图所示,删除节点2时,在它的右子树 中找到最小的节点3,该节点一定为待删除节点的后继。删除节点3(它可能是叶 节点或者链节点),然后把节点2的值改为3。
  • 也可以使用它的前驱(左子树的最大值)代替 它本身。操作方法相同。
  • 为了方便查找后继结点,在每个结点上新增了 父指针fa,这样构建的二叉树是双向链表。
  • 插入结点时在维护向下的指针时,也要同步维 护向上的指针。

上面其实并不是重点,重点是下面的!!!


二叉查找树的平衡性问题讨论

  • 随机的进行N2(N>=1000)次插入和删除之后,二叉查找树会趋向于向左偏沉。为 什么会出现这种情况,原因在于删除时,我们总是选择将待删除节点的后继代替 它本身。这样就会造成总是右边的节点数目减少,以至于树向左偏沉。已经被证 明,随机插入或删除N2次以后,树的期望深度为Θ(N1/2)。
  • 对待随机的数据二叉查找树已经做得很不错了,但是如果有像这样6,5,4,3,2,1有 序的数据插入树中时,会有什么后果出现?如图所示。二叉查找树退化成为了一 条链。这个时候,无论是查找、插入还是删除,都退化成了O(N)的时间。
  • 我们需要使二叉查找树变得尽量平衡,才能保证各种操作在 O(logN)的期望时间内完成,于是各种自动平衡二叉查找树 (Self-Balancing Binary Search Tree)因而诞生。

随机二叉查找树Treap

Treap是一种平衡树,在BST的基础上添加一个随机的修正值,Treap节点的修正值也满足最小堆的性质,最小堆性质可以描述为每个子树节点都小于等于其子节点。所以,Treap也被称为堆树或树堆。

Treap满足以下性质:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值,而且它 的根节点的修正值小于等于左子树根节点的修正值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值,而且它 的根节点的修正值小于等于右子树根节点的修正值;
  • 它的左、右子树也分别为Treap。 

BST有时会因为数据的特殊性,准确说就是一些不良心的出题人,而被卡掉,而Treap则是强行将特殊的数据转化为不特殊的数据,从而不被卡掉。当然,随机数据被卡的情况也是有的,只不过几率很小罢了。遇到你就可以去买彩票了。

为了使Treap中的节点满足BST与小根堆性质,我们需要对这棵树进行旋转操作对其进行调整。

构造

笔者用指针构造的,可以参考。

struct Treap
{
	Treap* ch[2];
	int siz,cnt,val,rnd;
	Treap(int v): val(v){siz=cnt=1;rnd=rand();ch[0]=ch[1]=NULL;}
	int cmp(int x){
		if(x==val) return -1;
		return x<val?0:1;
	}
	void updata(){
		siz=cnt;
		if(ch[0]!=NULL) siz+=ch[0]->siz;
		if(ch[1]!=NULL) siz+=ch[1]->siz;
	}
};
Treap* rt=NULL;

旋转

旋转分为左旋与右旋,对子树来说,具有如下性质:

  • 左旋一个子树,会把它的根节点旋转到根的左子树位置,同时根节点的右子节点 成为子树的根;右旋一个子树,会把它的根节点旋转到根的右子树位置,同时根 节点的左子节点成为子树的根。
  • 对子树旋转后,子树仍然满足BST性质。

通过旋转的几条重要性质,我们可以通过其来改变树的结构,从而达到我们的目的。

void rotate(Treap* &p,int d)//旋转 ,d==0左旋,d==1右旋 
{
	Treap* k=p->ch[d^1];
	p->ch[d^1]=k->ch[d];
	k->ch[d]=p;
	p->updata();k->updata();
	p=k;
}

插入

在Treap中插入元素,方法与BST插入方法相似,找到合适位置,存储元素,随机生成修订值,但注意过程中注意旋转维护树的结构。

void add(Treap* &p,int x)//插入 
{
	if(p==NULL){p=new Treap(x);return ;}
	if(x==p->val){++p->siz;++p->cnt;return ;}
	int d=p->cmp(x);add(p->ch[d],x);
	if(p->ch[d]->rnd<p->rnd) rotate(p,d^1);
	p->updata();
} 

删除

为了维护堆序,所以删除方法与普通BST不大相同,先将要删除的节点旋转至叶子节点,再做删除的操作。

  • 情况一,该节点为叶节点或链节点,则该节点是可以直接删除的节点。若该节点 有非空子节点,用非空子节点代替该节点的,否则用空节点代替该节点,然后删 除该节点。
  • 情况二,该节点有两个非空子节点。我们的策略是通过旋转,使该节点变为可以 直接删除的节点。如果该节点的左子节点的修正值小于右子节点的修正值,右旋 该节点,使该节点降为右子树的根节点,然后访问右子树的根节点,继续讨论; 反之,左旋该节点,使该节点降为左子树的根节点,然后访问左子树的根节点, 继续讨论,知道变成可以直接删除的节点
void del(Treap* &p,int x)//删除 
{
	if(p==NULL) return ;
	if(x==p->val)
	{
		if(p->cnt>1){--p->siz;--p->cnt;return ;}
		if(p->ch[0]==NULL){Treap* k=p;p=p->ch[1];delete(k);}
		else if(p->ch[1]==NULL){Treap* k=p;p=p->ch[0];delete(k);}
		else{
			int dd=p->ch[0]->rnd < p->ch[1]->rnd ? 1:0;
			rotate(p,dd);del(p->ch[dd],x);
		}
	}
	else if(x<p->val) del(p->ch[0],x);
	else del(p->ch[1],x);
	if(p!=NULL) p->updata();
 } 

查找元素排名

查找操作与BST相同。

更常用的操作是查找元素的排名。所谓排名是指如果把Treap按照中序遍历,在得到的中序序列 中,待查元素应排在什么位置。在维护了siz域的Treap上,查找排名非常好实现。这个实现得非 常可靠,即使待查元素不存在,仍然能得到正确的排名。
 

int rank(Treap* p,int x)//查询排名 
{
	int ss=p->ch[0]==NULL?0:p->ch[0]->siz;
	if(x==p->val) return ss+1;
	else if(x<p->val) return rank(p->ch[0],x);
	else return ss+p->cnt+rank(p->ch[1],x);
} 

选取第k小的节点

与查找排名相反,选取第k小的节点是以k为参数,返回对应的节点,可以看作查找排名的反函数。

int kth(Treap* p,int k)//查询第k小 
{
	int ss=p->ch[0]==NULL?0:p->ch[0]->siz;
	if(k<=ss) return kth(p->ch[0],k);
	else if(k<=ss+p->cnt) return p->val;
	else return kth(p->ch[1],k-ss-p->cnt);
}

前驱

前驱即严格小于当前节点的最大节点。

int pre(Treap* p,int x)//前驱 
{
	if(p==NULL) return -INF;
	int d=p->cmp(x);
	if(d==-1||d==0) return pre(p->ch[0],x);
	return max(p->val,pre(p->ch[1],x));
} 

后继

后继即严格大于当前节点的最小节点。

int nxt(Treap* p,int x)//后继 
{
	if(p==NULL) return INF;
	int d=p->cmp(x);
	if(d==-1||d==1) return nxt(p->ch[1],x);
	return min(p->val,nxt(p->ch[0],x));
}

例题

可以参见洛谷的【模板】普通平衡树,很模板,就上面的操作。

源码

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<time.h>
#define MAXN 100005
using namespace std;
typedef long long LL;
const int INF=0x7f7f7f7f;
struct Treap
{
	Treap* ch[2];
	int siz,cnt,val,rnd;
	Treap(int v): val(v){siz=cnt=1;rnd=rand();ch[0]=ch[1]=NULL;}
	int cmp(int x){
		if(x==val) return -1;
		return x<val?0:1;
	}
	void updata(){
		siz=cnt;
		if(ch[0]!=NULL) siz+=ch[0]->siz;
		if(ch[1]!=NULL) siz+=ch[1]->siz;
	}
};
Treap* rt=NULL;
void rotate(Treap* &p,int d)//旋转 ,d==0左旋,d==1右旋 
{
	Treap* k=p->ch[d^1];
	p->ch[d^1]=k->ch[d];
	k->ch[d]=p;
	p->updata();k->updata();
	p=k;
}
void add(Treap* &p,int x)//插入 
{
	if(p==NULL){p=new Treap(x);return ;}
	if(x==p->val){++p->siz;++p->cnt;return ;}
	int d=p->cmp(x);add(p->ch[d],x);
	if(p->ch[d]->rnd<p->rnd) rotate(p,d^1);
	p->updata();
} 
void del(Treap* &p,int x)//删除 
{
	if(p==NULL) return ;
	if(x==p->val)
	{
		if(p->cnt>1){--p->siz;--p->cnt;return ;}
		if(p->ch[0]==NULL){Treap* k=p;p=p->ch[1];delete(k);}
		else if(p->ch[1]==NULL){Treap* k=p;p=p->ch[0];delete(k);}
		else{
			int dd=p->ch[0]->rnd < p->ch[1]->rnd ? 1:0;
			rotate(p,dd);del(p->ch[dd],x);
		}
	}
	else if(x<p->val) del(p->ch[0],x);
	else del(p->ch[1],x);
	if(p!=NULL) p->updata();
 } 
int rank(Treap* p,int x)//查询排名 
{
	int ss=p->ch[0]==NULL?0:p->ch[0]->siz;
	if(x==p->val) return ss+1;
	else if(x<p->val) return rank(p->ch[0],x);
	else return ss+p->cnt+rank(p->ch[1],x);
} 
int kth(Treap* p,int k)//查询第k小 
{
	int ss=p->ch[0]==NULL?0:p->ch[0]->siz;
	if(k<=ss) return kth(p->ch[0],k);
	else if(k<=ss+p->cnt) return p->val;
	else return kth(p->ch[1],k-ss-p->cnt);
}
int pre(Treap* p,int x)//前驱 
{
	if(p==NULL) return -INF;
	int d=p->cmp(x);
	if(d==-1||d==0) return pre(p->ch[0],x);
	return max(p->val,pre(p->ch[1],x));
} 
int nxt(Treap* p,int x)//后继 
{
	if(p==NULL) return INF;
	int d=p->cmp(x);
	if(d==-1||d==1) return nxt(p->ch[1],x);
	return min(p->val,nxt(p->ch[0],x));
}
int n;
signed main()
{
	//srand(time(NULL));
	scanf("%d",&n);
	while(n--)
	{
		int opt,x;
		scanf("%d %d",&opt,&x);
		if(opt==1) add(rt,x);
		if(opt==2) del(rt,x);
		if(opt==3) printf("%d\n",rank(rt,x));
		if(opt==4) printf("%d\n",kth(rt,x));
		if(opt==5) printf("%d\n",pre(rt,x));
		if(opt==6) printf("%d\n",nxt(rt,x));
	}
	return 0;
}

谢谢!!!

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
红黑平衡二叉都是用于保持二叉搜索平衡的数据结构,但它们在某些方面有所不同。 优点: 1. 平衡性:红黑平衡二叉都能够在插入和删除操作后自动调整的结构,保持平衡,从而保证了在最坏情况下的查找效率为O(log n)。 2. 动态性:红黑平衡二叉都支持高效的动态插入和删除操作,适用于频繁更新的应用场景。 3. 操作简单:相比其他平衡结构,红黑平衡二叉的操作相对简单,实现起来较为容易。 差异: 1. 结构性:红黑是一种特殊的二叉搜索,它在每个节点上增加了一个额外的颜色属性,并通过一些规则来保持平衡。而平衡二叉是一种更广义的概念,可以有多种实现方式,如AVLTreap等。 2. 调整频率:红黑的调整操作相对较少,仅在插入和删除时需要进行调整。而平衡二叉可能需要更频繁地进行调整,因为它要保持每个节点的左右子高度差不超过1。 3. 空间利用:红黑需要额外的颜色属性来维持平衡,并且每个节点还需要存储其颜色信息。而平衡二叉只需要存储节点值和指向左右子的指针,相对而言空间利用更加紧凑。 综上所述,红黑相对于平衡二叉在实现和调整操作上更简单,但在空间利用上稍逊一筹。选择使用哪种结构取决于具体应用场景和需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值