[NOI2018]归程

归程

题解

挺好想的一道题

很容易想到,由于一辆车只能在没有积水的路面上行驶,答案就是它所在的连通块中所有点距1号节点的最小值。

如果每次询问都来缩一次点的话明显会T掉,而它每次询问的积水线又是不同的,我们考虑如何维护连通块的海拔。 

由于海拔越高能满足的肯定越多,我们就想到了通过海拔构建一棵最小生成树,当查询为(p,v)时就是查询大于p海拔的路构成的生成树上点v所在的联通块的最小距点1的距离。很明显,如果可以离线下来做的话这个问题很快就解决了,可是它又要求强制在线,考虑如何在线维护并查集。

可持久化的并查集明显是个很好的选择,但是笔者并没有打可持久化并查集。我们可以在连接两个节点祖先的并查集时建一个新点,其点权为当前边的海拔,作为这两个节点祖先的父亲。很容易发现,在我们连接得到的这棵二叉树上,从叶子节点到祖先节点的路径上,点权是递减的。我们可以通过倍增维护一条路径上的点权,找到u深度最小的点权大于p的祖先。那么,它的子树上到点1距离最短的点就是我们停车的点,而这距离可以在dfs的过程中维护到每个点上。

至于每个点到点1的距离可以通过dijkstra预处理出来。

时间复杂度O\left((n+m)log_{n} \right )

源码

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define MAXN 400005
const int INF=0x7f7f7f7f;
typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int,int> pii;
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){
	_T f=1;x=0;char s=getchar();
	while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
	while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
	x*=f;
}
int n,m,head[MAXN],tot,q,t,fa[MAXN],cnt;
int dis[MAXN],val[MAXN],minn[MAXN],f[MAXN][20];
LL k,s;
struct ming{int u,v,l,a;}a[MAXN];
struct edge{int to,nxt;}e[MAXN<<1];
vector<pii> G[MAXN];
struct tann{
	int id,ti;
	bool friend operator < (const tann &x,const tann &y){
		return x.ti>y.ti;
	}
};
void addEdge(int u,int v){e[++tot]=(edge){v,head[u]};head[u]=tot;}
bool cmp(ming x,ming y){return x.a>y.a;}
void makeSet(int x){for(int i=1;i<=x;i++)fa[i]=i;}
int findSet(int x){return fa[x]==x?x:fa[x]=findSet(fa[x]);}
priority_queue<tann> q1;
void dijkstra(){
	while(!q1.empty())q1.pop();
	for(int i=1;i<=n;i++)dis[i]=INF;
	q1.push((tann){1,0});dis[1]=0;
	while(!q1.empty()){
		tann t=q1.top();int u=t.id;q1.pop();
		if(t.ti!=dis[u])continue;int siz=G[u].size();
		//printf("queue%d %d\n",u,dis[u]);
		for(int i=0;i<siz;i++){
			int v=G[u][i].first,w=G[u][i].second;
			if(dis[v]>dis[u]+w)dis[v]=dis[u]+w,q1.push((tann){v,dis[v]});
		}
	}
	for(int i=1;i<=n;i++)minn[i]=dis[i];//,printf("dist%d:%d\n",i,dis[i]);
}
void dfs(int u,int fa){
	f[u][0]=fa;if(u>n)minn[u]=INF;
	for(int i=1;i<20;i++)f[u][i]=f[f[u][i-1]][i-1];
	for(int i=head[u];i;i=e[i].nxt){
		int v=e[i].to;if(v==fa)continue;//printf("%d to %d\n",u,v);
		dfs(v,u);minn[u]=min(minn[u],minn[v]);
	}
	//printf("%d-->%d %d %d\n",fa,u,minn[u],val[u]);
}
int query(int u,int w){
	for(int i=19;i>=0;i--)
		if(val[f[u][i]]>w)
			u=f[u][i];
	//printf("query%d %d %d\n",u,val[u],w);
	return minn[u];
}
signed main(){
	freopen("return.in","r",stdin);
	freopen("return.out","w",stdout);
	read(t);
	while(t--){
		read(n);read(m);cnt=n;tot=0;
		for(int i=1;i<=m;i++){
			read(a[i].u),read(a[i].v),read(a[i].l),read(a[i].a);
			G[a[i].u].push_back(make_pair(a[i].v,a[i].l));
			G[a[i].v].push_back(make_pair(a[i].u,a[i].l));
		}
		dijkstra();sort(a+1,a+m+1,cmp);makeSet(n);
		for(int i=1;i<=n;i++)val[i]=INF;
		for(int i=1;i<=m;i++){
			int u=a[i].u,v=a[i].v,w=a[i].a;
			if((u=findSet(u))==(v=findSet(v)))continue;
			cnt++;fa[cnt]=cnt;fa[u]=fa[v]=cnt;val[cnt]=w;
			//printf("%d-->%d-->%d\n",cnt,u,v);
			addEdge(u,cnt);addEdge(v,cnt);
			addEdge(cnt,u);addEdge(cnt,v);
		}
		int root=0,las=0;
		for(int i=1;i<=cnt;i++)if(fa[i]==i)root=i;
		dfs(root,0);read(q);read(k);read(s);
		for(int i=1;i<=q;i++){
			int p,v;read(v);read(p);
			v=(1ll*v+1ll*k*las-1LL)%n+1;
			p=(1ll*p+1ll*k*las)%(s+1);
			//printf("ask %d %d\n",v,p);
			las=query(v,p);printf("%d\n",las);
		}
		for(int i=1;i<=n;i++)G[i].clear();
		for(int i=1;i<=cnt;i++)head[i]=0;
		memset(f,0,sizeof(f));
	}
	return 0;
}

谢谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值