Token generation
题解
由于某些原因就采用英文名了
看到这道题,我们很快就发现使得 F ( Q ) F(Q) F(Q)增加的值,存在这样的构造 1...10...0 1...10...0 1...10...0,即开头是一段连续的 1 1 1,之后全是 0 0 0。
基于此,我们可以通过二分的方法找到对于当前的 N N N,它的的总位数与后面 0 0 0的数量。
之后,我们思考如何找到第 k k k个满足 F ( Q ) = N F(Q)=N F(Q)=N的 Q Q Q。
由于它的第一关键字是 1 1 1的个数,我们可以通过组合数的枚举来计算出它包含的 1 1 1的个数。
因为 k ≤ 1 0 18 k\leq 10^{18} k≤1018,这里枚举的次数不会太多,大概是 l o g k log\,k logk的级别,实际上还要小些。
当知道 1 1 1的个数后,我们只需要一位一位往下去枚举哪些位置需要取 1 1 1,判断也可以用组合数来执行。
由于可能枚举的位置有点多,也需要通过二分来进行。
当有了上面的思路,我们就可以去做了。
但我们发现,如果我们直接去预处理组合数大小时,会 T T T得只有 30 30 30pts,即使通过阶乘去求,也需要一个很大的模数,还是只有 50 p t s 50pts 50pts。
由于后面 n , k n,k