LYK loves girls

LYK loves girls

在这里插入图片描述

题解

首先看到这道题,应该是很容易想到去dp的。
但由于要在一个环上处理掉循环同构的情况,所以我们还得对最后的到的dp处理一下。

先破环为链,由于链的前端与后端是连在一起的,需要记录一下这两块的W长度。
d p i , j , k dp_{i,j,k} dpi,j,k表示总共 i i i个位置,前端有 j j j个W,后端有 k k k个W的情况数。
方程式是很好想的 d p i , j , k = d p i , j , k − 1 , d p i , j , 0 = ∑ k = 0 K d p i , j , k dp_{i,j,k}=dp_{i,j,k-1},dp_{i,j,0}=\sum_{k=0}^{K}dp_{i,j,k} dpi,j,k=dpi,j,k1,dpi,j,0=k=0Kdpi,j,k
对于每个 j + k j+k j+k小于 K K K的dp值都是需要记入答案的。

但每个字符串的循环同构在我们当前记录的答案中出现次数都为 n n n吗?显然不是的。
由于我们的答案记录的是所有不同的字符串数量,所以它的出现次数应为它的最小循环节长度。
所以对于每种字符串,我们要除去的应为它的最小循环节长度。
所以,我们要进一步将 d p i , j , k dp_{i,j,k} dpi,j,k所代表的字符串转化为最小循环节为 i i i的长度为 n n n的字符串。
上面操作可以用容斥解决。很明显,一个长度为 a a a的字符串如果合法的话,那它重复 p p p次得到的长度为 a p ap ap的字符串也是合法的,我们需要从 a p ap ap中减去所有这样的 a a a
类似卷积的做法可以让时间复杂度做到 O ( K 2 n l n   n ) O\left(K^2nln\,n\right) O(K2nlnn),有 60 p t s 60pts 60pts

考虑优化。
很明显,我们没必要对于每个字符串都有一个单独针对的dp。
如果,我们记 f i f_{i} fi表示长度为 i i i的末尾为M的合法字符串个数,因为循环同构是一定可以得到一种末尾为M的情况,我们其实是可以通过这些字符串变形出其它字符串。
如果我们要得到长度为 l e n len len的合法字符串长度,可以用 ∑ i = 0 K ( i + 1 ) f l e n − i − 1 \sum_{i=0}^{K}(i+1)f_{len-i-1} i=0K(i+1)fleni1来得到。
因为 f f f并未不能表示不全为M的循环字符串长度,我们需要通过在后面填上 i i i个W与一个M,在将这些依次从队尾移动至对首来得到所有的循环同构结构。
容易发现,任意一个长度为 l e n len len的合法字符串,在其中出现且仅出现一次。
顺便还可以在用前缀和优化一下 f f f的转移。
这样,就可以优化掉一个 K K K了。
不过好像并没有什么*用,还是会T。

究其根本原因,还是因为我们对于每一个 n n n的约数,都会存在一个容斥一样的家伙。
由于循环节长度不同,它的出现次数达不到 n n n,所以必定会产生一个容斥。
让他的出现次数达到 n n n,这样就可以一刀切了。
于是,我们对于每一个长度为 p i p_{i} pi的,需要出现 n p i \frac{n}{p_{i}} pin次,其中 n n n p i p_{i} pi的倍数。
我们忽然发现,这个数恰好是 n n n以内 p i p_{i} pi的倍数的个数。
所以,我们可以对于每一个 i i i,直接加上 d p ( n , i ) dp_{(n,i)} dp(n,i)次。此时的 d p ( n , i ) dp_{(n,i)} dp(n,i)是不考虑最小循环节是否为 ( n , i ) (n,i) (n,i)的。
由于 p i p_{i} pi n n n的约数,所以,所有的 ( n , i ) (n,i) (n,i)中刚好有 n p i \frac{n}{p_{i}} pin个包含 p i p_{i} pi
于是,我们可以直接将所有的 d p ( n , i ) dp_{(n,i)} dp(n,i)相加即可。

这些 ( n , i ) (n,i) (n,i)是有许多重复的,重复的我们可以记忆化,没必要在求了。
所以最后的总时间复杂度就是 O ( n + D ( n ) K ) O\left(n+D(n)K\right) O(n+D(n)K)了,其中 D ( n ) D(n) D(n)表示 n n n的约数个数。

好像说用Bunside引理也可以解释,不过我没看懂它的解释,就自己yy了一个。

源码

为什么我考场上会把容斥打错
注意至少有一个男的,所以我们没必要单独处理所有女生。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
using namespace std;
#define MAXN 100005
#define lowbit(x) (x&-x)
#define reg register
typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int,int> pii;
const int mo=1e9+7;
const int INF=0x7f7f7f7f;
const double PI=acos(-1.0);
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){
	_T f=1;x=0;char s=getchar();
	while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}
	while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}
	x*=f;
}
int n,K,ans,f[MAXN],inv[MAXN],sum[MAXN],dp[MAXN];
bool vis[MAXN];
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int add(int x,int y){return x+y<mo?x+y:x+y-mo;}
void init(){inv[1]=1;for(int i=2;i<=n;i++)inv[i]=1ll*(mo-mo/i)*inv[mo%i]%mo;}
signed main(){
	freopen("girls.in","r",stdin);
	freopen("girls.out","w",stdout);
	read(n);read(K);K=min(n,K);init();
	f[0]=f[1]=sum[0]=1;sum[1]=2;
	for(int i=2;i<=n;i++)
		f[i]=(i<K+2)?sum[i-1]:add(sum[i-1],mo-sum[i-K-2]),
		sum[i]=add(sum[i-1],f[i]);
	for(int i=1;i<=n;i++){
		int x=gcd(i,n);
		if(!dp[x])
			for(int j=0;j<=min(x,K);j++)
				dp[x]=add(dp[x],1ll*(j+1)*f[x-j-1]%mo);
		ans=add(ans,dp[x]);
	}
	int tmp=1ll*ans*inv[n]%mo;
	printf("%d\n",tmp);
	return 0;
}

谢谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值