- 博客(1)
- 收藏
- 关注
原创 机器学习的第一课
机器学习基础:线性回归与梯度下降 本文梳理了机器学习中的线性回归基础概念和优化方法。主要内容包括: 线性回归基础:介绍了线性回归的矩阵表示和基本术语(训练集、特征、目标值等),解释了模型从输入到预测的完整流程。 线性回归方程:详细说明了单样本和多样本情况下的线性模型表示,引入平方误差(MSE)作为损失函数,并阐述了参数优化的目标。 解析解:展示了如何通过矩阵运算直接求解最优参数,包括将偏置项融入权重矩阵的数学推导过程。 梯度下降:作为无法获得解析解时的替代方案,解释了梯度下降的基本原理和更新规则,强调了学习
2025-07-07 10:38:30
652
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅