洛谷P1090 [NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G

本文介绍了如何使用优先队列(优先栈)解决计算机科学中的合并果子问题。文中详细解释了优先队列的工作原理,包括其插入和删除元素的规则,并提供了C++代码示例来演示如何在O(logn)的时间复杂度内解决此类问题。
摘要由CSDN通过智能技术生成

题目链接:[NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G - 洛谷

了解优先队列的好题目, 优先队列并非先进先出, 在优先队列中优先级高的元素先出队列, 我们可以定义元素从小到大排列或者从大到小排列, 每当压进一个元素都会进行排列, 保持队列在一个规则的排序中

从大到小定义: //top为最大值 降序

priority_queue<int>q;

或者

priority_queue<int,vector<int>,less<>>q;

或者

priority_queue<int,vector<int>,less<int>>q;

从小到大定义: //top为最小值 升序

priority_queue<int,vector<int>,greater<>>q;

或者

priority_queue<int,vector<int>,greater<int>>q;

注意在添加了第三个参数的时候vector不能不写, 是用于保存数据的容器

优先队列的复杂度是O(logn)

利用优先队列存储这题的数据就能很好解决

/*
⣿⣿⣿⣿⣿⣿⡷⣯⢿⣿⣷⣻⢯⣿⡽⣻⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠸⣿⣿⣆⠹⣿⣿⢾⣟⣯⣿⣿⣿⣿⣿⣿⣽⣻⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣻⣽⡿⣿⣎⠙⣿⣞⣷⡌⢻⣟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⡄⠹⣿⣿⡆⠻⣿⣟⣯⡿⣽⡿⣿⣿⣿⣿⣽⡷⣯⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣟⣷⣿⣿⣿⡀⠹⣟⣾⣟⣆⠹⣯⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⢠⡘⣿⣿⡄⠉⢿⣿⣽⡷⣿⣻⣿⣿⣿⣿⡝⣷⣯⢿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣯⢿⣾⢿⣿⡄⢄⠘⢿⣞⡿⣧⡈⢷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⢸⣧⠘⣿⣷⠈⣦⠙⢿⣽⣷⣻⣽⣿⣿⣿⣿⣌⢿⣯⢿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣟⣯⣿⢿⣿⡆⢸⡷⡈⢻⡽⣷⡷⡄⠻⣽⣿⣿⡿⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣏⢰⣯⢷⠈⣿⡆⢹⢷⡌⠻⡾⢋⣱⣯⣿⣿⣿⣿⡆⢻⡿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⡎⣿⢾⡿⣿⡆⢸⣽⢻⣄⠹⣷⣟⣿⣄⠹⣟⣿⣿⣟⣿⣿⣿⣿⣿⣿⣽⣿⣿⣿⡇⢸⣯⣟⣧⠘⣷⠈⡯⠛⢀⡐⢾⣟⣷⣻⣿⣿⣿⡿⡌⢿⣻⣿⣿
⣿⣿⣿⣿⣿⣿⣧⢸⡿⣟⣿⡇⢸⣯⣟⣮⢧⡈⢿⣞⡿⣦⠘⠏⣹⣿⣽⢿⣿⣿⣿⣿⣯⣿⣿⣿⡇⢸⣿⣿⣾⡆⠹⢀⣠⣾⣟⣷⡈⢿⣞⣯⢿⣿⣿⣿⢷⠘⣯⣿⣿
⣿⣿⣿⣿⣿⣿⣿⡈⣿⢿⣽⡇⠘⠛⠛⠛⠓⠓⠈⠛⠛⠟⠇⢀⢿⣻⣿⣯⢿⣿⣿⣿⣷⢿⣿⣿⠁⣾⣿⣿⣿⣧⡄⠇⣹⣿⣾⣯⣿⡄⠻⣽⣯⢿⣻⣿⣿⡇⢹⣾⣿
⣿⣿⣿⣿⣿⣿⣿⡇⢹⣿⡽⡇⢸⣿⣿⣿⣿⣿⣞⣆⠰⣶⣶⡄⢀⢻⡿⣯⣿⡽⣿⣿⣿⢯⣟⡿⢀⣿⣿⣿⣿⣿⣧⠐⣸⣿⣿⣷⣿⣿⣆⠹⣯⣿⣻⣿⣿⣿⢀⣿⢿
⣿⣿⣿⣿⣿⣿⣿⣿⠘⣯⡿⡇⢸⣿⣿⣿⣿⣿⣿⣿⣧⡈⢿⣳⠘⡄⠻⣿⢾⣽⣟⡿⣿⢯⣿⡇⢸⣿⣿⣿⣿⣿⣿⡀⢾⣿⣿⣿⣿⣿⣿⣆⠹⣾⣷⣻⣿⡿⡇⢸⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡇⢹⣿⠇⢸⣿⣿⣿⣿⣿⣿⣿⣿⣷⣄⠻⡇⢹⣆⠹⣟⣾⣽⣻⣟⣿⣽⠁⣾⣿⣿⣿⣿⣿⣿⣇⣿⣿⠿⠛⠛⠉⠙⠋⢀⠁⢘⣯⣿⣿⣧⠘⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⡈⣿⡃⢼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⡙⠌⣿⣆⠘⣿⣞⡿⣞⡿⡞⢠⣿⣿⣿⣿⣿⡿⠛⠉⠁⢀⣀⣠⣤⣤⣶⣶⣶⡆⢻⣽⣞⡿⣷⠈⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡿⠃⠘⠁⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⠛⠛⢿⣄⢻⣿⣧⠘⢯⣟⡿⣽⠁⣾⣿⣿⣿⣿⣿⡃⢀⢀⠘⠛⠿⢿⣻⣟⣯⣽⣻⣵⡀⢿⣯⣟⣿⢀⣿
⣿⣿⣿⣟⣿⣿⣿⣿⣶⣶⡆⢀⣿⣾⣿⣾⣷⣿⣶⠿⠚⠉⢀⢀⣤⣿⣷⣿⣿⣷⡈⢿⣻⢃⣼⣿⣿⣿⣿⣻⣿⣿⣿⡶⣦⣤⣄⣀⡀⠉⠛⠛⠷⣯⣳⠈⣾⡽⣾⢀⣿
⣿⢿⣿⣿⣻⣿⣿⣿⣿⣿⡿⠐⣿⣿⣿⣿⠿⠋⠁⢀⢀⣤⣾⣿⣿⣿⣿⣿⣿⣿⣿⣌⣥⣾⡿⣿⣿⣷⣿⣿⢿⣷⣿⣿⣟⣾⣽⣳⢯⣟⣶⣦⣤⡾⣟⣦⠘⣿⢾⡁⢺
⣿⣻⣿⣿⡷⣿⣿⣿⣿⣿⡗⣦⠸⡿⠋⠁⢀⢀⣠⣴⢿⣿⣽⣻⢽⣾⣟⣷⣿⣟⣿⣿⣿⣳⠿⣵⣧⣼⣿⣿⣿⣿⣿⣾⣿⣿⣿⣿⣿⣽⣳⣯⣿⣿⣿⣽⢀⢷⣻⠄⠘
⣿⢷⣻⣿⣿⣷⣻⣿⣿⣿⡷⠛⣁⢀⣀⣤⣶⣿⣛⡿⣿⣮⣽⡻⣿⣮⣽⣻⢯⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣯⢀⢸⣿⢀⡆
⠸⣟⣯⣿⣿⣷⢿⣽⣿⣿⣷⣿⣷⣆⠹⣿⣶⣯⠿⣿⣶⣟⣻⢿⣷⣽⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢀⣯⣟⢀⡇
⣇⠹⣟⣾⣻⣿⣿⢾⡽⣿⣿⣿⣿⣿⣆⢹⣶⣿⣻⣷⣯⣟⣿⣿⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⢀⡿⡇⢸⡇
⣿⣆⠹⣷⡻⣽⣿⣯⢿⣽⣻⣿⣿⣿⣿⣆⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠛⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠇⢸⣿⠇⣼⡇
⡙⠾⣆⠹⣿⣦⠛⣿⢯⣷⢿⡽⣿⣿⣿⣿⣆⠻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠎⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠏⢀⣿⣾⣣⡿⡇
⣿⣷⡌⢦⠙⣿⣿⣌⠻⣽⢯⣿⣽⣻⣿⣿⣿⣧⠩⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⢰⢣⠘⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠃⢀⢀⢿⣞⣷⢿⡇
⣿⣽⣆⠹⣧⠘⣿⣿⡷⣌⠙⢷⣯⡷⣟⣿⣿⣿⣷⡀⡹⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣈⠃⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⢀⣴⡧⢀⠸⣿⡽⣿⢀
⢻⣽⣿⡄⢻⣷⡈⢿⣿⣿⢧⢀⠙⢿⣻⡾⣽⣻⣿⣿⣄⠌⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠛⢁⣰⣾⣟⡿⢀⡄⢿⣟⣿⢀
⡄⢿⣿⣷⢀⠹⣟⣆⠻⣿⣿⣆⢀⣀⠉⠻⣿⡽⣯⣿⣿⣷⣈⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠋⢀⣠⠘⣯⣷⣿⡟⢀⢆⠸⣿⡟⢸
⣷⡈⢿⣿⣇⢱⡘⢿⣷⣬⣙⠿⣧⠘⣆⢀⠈⠻⣷⣟⣾⢿⣿⣆⠹⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠋⣠⡞⢡⣿⢀⣿⣿⣿⠇⡄⢸⡄⢻⡇⣼
⣿⣷⡈⢿⣿⡆⢣⡀⠙⢾⣟⣿⣿⣷⡈⠂⠘⣦⡈⠿⣯⣿⢾⣿⣆⠙⠻⠿⠿⠿⠿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⢋⣠⣾⡟⢠⣿⣿⢀⣿⣿⡟⢠⣿⢈⣧⠘⢠⣿
⣿⣿⣿⣄⠻⣿⡄⢳⡄⢆⡙⠾⣽⣿⣿⣆⡀⢹⡷⣄⠙⢿⣿⡾⣿⣆⢀⡀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⢀⣀⣠⣴⡿⣯⠏⣠⣿⣿⡏⢸⣿⡿⢁⣿⣿⢀⣿⠆⢸⣿
⣿⣿⣿⣿⣦⡙⣿⣆⢻⡌⢿⣶⢤⣉⣙⣿⣷⡀⠙⠽⠷⠄⠹⣿⣟⣿⣆⢙⣋⣤⣤⣤⣄⣀⢀⢀⢀⢀⣾⣿⣟⡷⣯⡿⢃⣼⣿⣿⣿⠇⣼⡟⣡⣿⣿⣿⢀⡿⢠⠈⣿
⣿⣿⣿⣿⣿⣷⣮⣿⣿⣿⡌⠁⢤⣤⣤⣤⣬⣭⣴⣶⣶⣶⣆⠈⢻⣿⣿⣆⢻⣿⣿⣿⣿⣿⣿⣷⣶⣤⣌⣉⡘⠛⠻⠶⣿⣿⣿⣿⡟⣰⣫⣴⣿⣿⣿⣿⠄⣷⣿⣿⣿
*/
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cmath>
#include <cstring>
#include <string>
#include <stack>
#include <deque>
#include <map>
#include <set>
#include <bitset>
#include <unordered_map>
#include <unordered_set>
using namespace std;
#define ll long long
#define endl "\n"
#define rep(i, a, b) for (ll i = (a); i <= (b); i++)
#define repr(i, a, b) for (ll i = (a); i < (b); i++)
#define rrep(i, a, b) for (ll i = (b); i >= (a); i--)
#define rrepr(i, a, b) for (ll i = (b); i > (a); i--)
#define min(a,b) (a)<(b)?(a):(b)
#define max(a,b) (a)>(b)?(a):(b)
#define yes cout<<"YES"<<endl;
#define no cout<<"NO"<<endl;
#define debug cout<<"here!"<<endl;

ll cnt,n,m,t,ans,ant;
const int N=1e5+10;
const int INF=0x3f3f3f3f;
const ll llINF=0x3f3f3f3f3f3f3f3f;
ll arr[N];
string str;
priority_queue<ll,vector<ll>,greater<>>q;//从小到大排列

inline ll read()
{
    char c = getchar();int x = 0,s = 1;
    while(c < '0' || c > '9') {if(c == '-') s = -1;c = getchar();}//是符号
    while(c >= '0' && c <= '9') {x = x*10 + c -'0';c = getchar();}//是数字
    return x*s;
}


void solve()
{
    cin>>n;
    rep(i,1,n)
    {
        cin>>cnt;
        q.push(cnt);
    }
    while(q.size()>=2)
    {
        ll x,y;
        x=q.top();
        q.pop();
        y=q.top();
        q.pop();
        ans+=x+y;
        q.push(x+y);//合成的新堆
    }
    cout<<ans<<endl;
    return;
}

int main()
{
    ios::sync_with_stdio(false);
    //所有输入用cin
    //所有输出用cout
	cin.tie(0);
	cout.tie(0);
    solve();
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值