x的n次方

求x的n次方
Implement pow(x, n)
Pow(x, n)
二分法,递归求解即可
注意判断n的奇偶性

double myPow(double x, int n) {
    if (n < 0)
        return 1.0 / power(x, -n);
    else
        return power(x, n);
}
double power(double x, int n)
{
    if (n == 0)
        return 1;
    double result = power(x, n / 2);
    if (n % 2)
        return x*result*result;
    else
        return result*result;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这个问题可以用数学归纳法来证明。 当 n = 1 时,x的n次方求和为x,x的n次方求和的n次方也为x。 现在假设当n=k时,x的n次方求和的n次方等于(x的1次方+x的2次方+...+x的k次方)的k次方,即: (x^1 + x^2 + ... + x^k)^k 考虑当n=k+1时,我们需要证明: (x^1 + x^2 + ... + x^k + x^(k+1))^(k+1) = (x^1 + x^2 + ... + x^k)^(k+1) + (k+1)*(x^1 + x^2 + ... + x^k)^k * x^(k+1) + (1/2)*(k+1)*k*(x^1 + x^2 + ... + x^(k-1))^2 * x^(k+1) + (1/2)*(k+1)*x^(2(k+1)) 我们可以利用二项式定理展开左边的式子: (x^1 + x^2 + ... + x^k + x^(k+1))^(k+1) = ∑(i=0 to k+1) (k+1 choose i) * x^(i(k+1)) 其中 (k+1 choose i) 是组合数,表示从k+1个元素中选出i个元素的组合数。注意到当i=k+1时, (k+1 choose i) = 1,而当i=0时,(k+1 choose i) = 1。 现在我们需要将这个式子分成三部分,并证明它们分别等于右边式子的三部分。 第一部分是 x^(k+1)。这个部分显然等于右边式子的第三部分 (1/2)*(k+1)*k*(x^1 + x^2 + ... + x^(k-1))^2 * x^(k+1)。 第二部分是 ∑(i=0 to k) (k choose i) * x^(ik) 。这个式子可以通过将x^(k+1)提取出来,然后利用归纳假设来得到: ∑(i=0 to k) (k choose i) * x^(ik) = (x^1 + x^2 + ... + x^k)^k 第三部分是 (k+1)*x^(k+1)。这个部分等于右边式子的第四部分 (1/2)*(k+1)*x^(2(k+1))。 因此,我们证明了当n=k+1时,x的n次方求和的n次方等于(x的1次方+x的2次方+...+x的k次方+x^(k+1))的k次方加上三个额外的项。 由此可得,对于任意正整数n,x的n次方求和的n次方等于(x的1次方+x的2次方+...+x的n次方)的n次方

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值