Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13082 Accepted Submission(s): 5009
Total Submission(s): 13082 Accepted Submission(s): 5009
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2 3 4
Sample Output
2 2 HintIn the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2. In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2. 题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=1060 题目大意 :求解n的n次方的最左边的数 题目分析 :1.直接用java的大数做(没什么技术含量,这里略) 2.因为数字太大,考虑用对数 主要思路是任意数num可以表示为:num ^ num = a * 10 ^ n(a的整数部分即为所求解, n为位数) 两边取对数:num * lg(num) = lg(a) + n, 令x = num * lg(num) 则n为x的整数部分,lg(a)为x的小数部分,所以lg(a) = x - n a = 10 ^ (x - n) => a = 10 ^ (x - (long long)x) 这里注意转换的的时候不能用int, 因为double表示的范围远大于int
#include <cmath> #include <cstdio> int main() { int T; scanf("%d",&T); while(T--) { int num; scanf("%d",&num); double x = num * log10(num); printf("%d\n", (int) pow(10.0 , (x - (long long)x))); } return 0; }